摘要
对一类分数阶椭圆型偏微分方程组解的存在性进行了研究.采用直接移动平面法,先通过计算得到分数阶椭圆型微分方程组解的估计,推得该方程组的无穷远处衰减原理和窄区域原理,接着分三步进行证明,找到直接移动平面法所需的起点后向无穷远处移动超平面,利用反证法最终得到解的径向对称性.
We study the symmetry of solutions for a class of fractional elliptic partial differential system.In this paper,we adopt the direct method of moving planes.First,we obtain the estimation of the solutions of the system through calculation.And the decay at infinity and the narrow region principle of the system are obtained.Then,the proof is carried out in three steps.The starting point required by the direct method of moving planes is found,and then the hyperplane can be moved to infinity.The radial symmetry of the solutions is finally obtained by the direct method of moving planes and repeatedly using the proof by contradiction.
作者
张宇健
沃维丰
ZHANG Yujian;WO Weifeng(School of Mathematics and Statistics,Ningbo University,Ningbo 315211,China)
出处
《纯粹数学与应用数学》
2023年第2期186-198,共13页
Pure and Applied Mathematics
基金
国家自然科学基金(11971251)
浙江省自然科学基金(LY20A010011).
关键词
完全非线性非局部算子
无穷远处衰减
窄区域原理
直接移动平面法
解的对称性
fully nonlinear nonlocal operators
decay at infinity
narrow region principle
direct method of moving planes
symmetry for solutions