期刊文献+

基于TLBO算法的不确定性条件下复杂产品协同设计的可靠性拓扑优化 被引量:1

Reliability Topology Optimization of Collaborative Design for Complex Products Under Uncertainties Based on the TLBO Algorithm
下载PDF
导出
摘要 复杂产品的拓扑优化设计可以显著节省材料和节能,有效地降低惯性力和机械振动。本研究以一种大吨位液压机作为典型的复杂产品,用于阐述该优化方法。本文提出了一种基于可靠性与优化解耦模型和基于教学学习的优化(TLBO)算法的可靠性拓扑优化方法。将由板结构形成的支撑物作为拓扑优化对象,重量轻、稳定性好。将不确定性下的可靠性优化和结构拓扑优化协同处理。首先,利用有限差分法将优化问题中的不确定性参数修正为确定性参数。然后,将不确定性可靠性分析和拓扑优化的复杂嵌套解耦。最后,利用TLBO算法求解解耦模型,该算法参数少,求解速度快。TLBO算法采用了自适应教学因子,在初始阶段实现了更快的收敛速度,并在后期进行了更精细的搜索。本文给出了一个液压机基板结构的数值实例,说明了该方法的有效性。 The topology optimization design of complex products can significantly improve material and power sav-ings,and reduce inertial forces and mechanical vibrations effectively.In this study,a large-tonnage hydraulic press was chosen as a typically complex product to present the optimization method.We pro-pose a new reliability topology optimization method based on the reliability-and-optimization decoupled model and teaching-learning-based optimization(TLBO)algorithm.The supports formed by the plate structure are considered as topology optimization objects,characterized by light weight and stability.The reliability optimization under certain uncertainties and structural topology optimization are pro-cessed collaboratively.First,the uncertain parameters in the optimization problem are modified into deterministic parameters using the finite difference method.Then,the complex nesting of the uncer-tainty reliability analysis and topology optimization are decoupled.Finally,the decoupled model is solved using the TLBO algorithm,which is characterized by few parameters and a fast solution.The TLBO algo-rithm is improved with an adaptive teaching factor for faster convergence rates in the initial stage and performing finer searches in the later stages.A numerical example of the hydraulic press base plate struc-ture is presented to underline the effectiveness of the proposed method.
作者 Zhaoxi Hong Xiangyu Jiang 冯毅雄 Qinyu Tian 谭建荣 Zhaoxi Hong;Xiangyu Jiang;Yixiong Feng;Qinyu Tian;Jianrong Tan(State Key Laboratory of Fluid Power and Mechatronic Systems,Zhejiang University,Hangzhou 310027,China;Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province,Zhejiang University,Hangzhou 310027,China)
出处 《Engineering》 SCIE EI CAS CSCD 2023年第3期71-81,共11页 工程(英文)
基金 the National Natural Science Foundation of China(51935009 and 52105281).
  • 相关文献

同被引文献41

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部