期刊文献+

Deep Learning for Strawberry Canopy Delineation and Biomass Prediction from High-Resolution Images 被引量:2

原文传递
导出
摘要 Modeling plant canopy biophysical parameters at the individual plant level remains a major challenge.This study presents a workflow for automatic strawberry canopy delineation and biomass prediction from high-resolution images using deep neural networks.High-resolution(5 mm)RGB orthoimages,near-infrared(NIR)orthoimages,and Digital Surface Models(DSM),which were generated by Structure from Motion(SfM),were utilized in this study.Mask R-CNN was applied to the orthoimages of two band combinations(RGB and RGB-NIR)to identify and delineate strawberry plant canopies.
出处 《Plant Phenomics》 SCIE EI 2022年第1期58-74,共17页 植物表型组学(英文)
关键词 Deep NEURAL INDIVIDUAL
  • 相关文献

同被引文献40

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部