摘要
令φ_(2)(x)为广义欧拉函数,S(x)为Smarandache函数,SL(x)为Smarandache LCM函数,利用初等数论的方法及数论函数方程的性质,给出丢番图方程Kφ_(2)[X(X+1)/2=S(SL(x^(19)))]的全部解为:(k,x)=(22,2),(42,3),(20,4),(20,5),(7,6),(4,10),(5,15).
Suppose thatφ_(2)(x)is the generalized Euler function S(x),is the Smarandache function,and SL(x)is the Smarandache LCM function.By using the method of elementary number theory and the properties of function equation in number theory,all solutions of the number theory function equation Kφ_(2)[X(X+1)/2=S(SL(x^(19)))]are given as follows:(k,x)=(22,2),(42,3),(20,4),(20,5),(7,6),(4,10),(5,15).
作者
丁恒兰
王霞
刘亚兰
龙敏鹏
DING Henglan;WANG Xia;LIU Yalan;LONG Min peng(School of Mathematical Science,Guizhou Normal University,Gui'an New District Guizhou 550025)
出处
《辽宁师专学报(自然科学版)》
2023年第2期1-7,83,共8页
Journal of Liaoning Normal College(Natural Science Edition)
基金
贵州省科学技术基金项目(黔科合基础-ZK[2021]一般313号)
贵州师范大学学术新苗基金项目(黔师新苗[2021]B10号)。