摘要
Finger-jointed lumber production has now become the most extensively used method for spliced lumbers jointing together endwise.The properties of finger-jointed lumber are affected by many different factors such as the end-pressure.The main mechanical properties to be tested for struc-tural use finger-jointed lumber include the modulus of elasticity in static bending and the bending strength.The most commonly used method for testing these properties at present is the experi-mental test.In this study,we used finite element method to investigate the end-pressure range,the modulus of elasticity in static bending and the bending strength for Pinus sylvistriv var.finger-jointed lumber under three different fitness ratios(0 mm,0.1 mm,0.3 mm).With finite element analysis(FEA)modelling results compared with the experimental test results,it is possible to find the relationship between these two kinds of results and use the FEA to predict the properties of finger-jointed lumber.The FEA applied in the end pressure tests showed a narrower range com-pared with the modelling results.It indicated that the FEA could be used in the prediction of the end pressure for finger-jointed lumber.The modelling results for modulus of elasticity(MOE)test and bending strength(MOR)test showed about 20%discrepancies compared with the experimen-tal results.Moreover,the MOE modelling results showed the same trend as experimental results under three different fitness levels while the MOR modelling results showed the different trend.It can be concluded that the FEA is a feasible way in analysing the properties of finger-jointed lumber if the errors could be eliminated properly.Some modifications should be made in order to realize the prediction of the properties of finger-jointed lumber more accurately.
基金
The work is supported by National Key Research&Development Program of China(No.2016YFD0600904)
Integration and Demonstration of the Value-added&Efficiency-increased Technology across the Industry Chain for Bamboo。