期刊文献+

基于模糊聚类和CNN-BIGRU的轨道电路故障预测 被引量:1

Fault Prediction Method of Track Circuit Based on Fuzzy Clustering and CNN-BIGRU
下载PDF
导出
摘要 针对轨道电路稳态环境下故障诊断时效性不足的问题,提出一种基于Gath-Geva(GG)模糊聚类对轨道电路退化状态进行划分,并利用卷积神经网络(convolutional neural network,简称CNN)和双向门控循环单元(bi-directional gated recurrent unit,简称BIGRU)进行轨道电路故障预测的方法。首先,通过集中监测设备获取ZPW-2000轨道电路各类故障发生前一定时间内的正常工作数据;其次,通过核主成分分析进行特征降维和GG模糊聚类对轨道电路性能退化状态进行阶段划分,识别不同的退化状态;最后,利用CNN-BIGRU混合神经网络挖掘轨道电路不同故障类型数据特征,对轨道电路退化状态所对应的故障类型进行预测。实验结果表明,该算法可以精确划分轨道电路退化状态并实现故障预测,CNN-BIGRU预测模型分类精确度可达97.62%,运行时间仅为13.18 s,能够为轨道电路的多模式健康状态识别提供一种有效的方法。 Aiming at the problem of insufficient timeliness of fault diagnosis of track circuit in steady-state envi-ronment,a method based on Gath-Geva(GG)fuzzy clustering to divide the degraded state of track circuit is proposed,and the fault prediction of track circuit is carried out by using convolutional neural network(CNN)and bi-directional gated recurrent unit(BIGRU).Firstly,through the centralized monitoring equipment,the normal working data of each fault type of ZPW-2000 track circuit within a certain time before the fault occurs are obtained.Then,the performance degradation states of track circuit are divided into stages by feature reduc-tion and GG fuzzy clustering based on kernel principal component analysis,and different degradation states are identified.Finally,CNN-BIGRU hybrid neural network is used to mine the data characteristics of different fault types of track circuit,predicting the fault types corresponding to the degraded state of track circuit.Experimen-tal results show that the algorithm can accurately divide the degraded state of track circuit and realize its fault prediction.The classification accuracy of CNN-BIGRU prediction model can reach 97.62%and the running time is only 13.18 s.It can provide an effective method for multi-mode health state recognition of track circuit.
作者 林俊亭 王帅 刘恩东 王阳 LIN Junting;WANG Shuai;LIU Endong;WANG Yang(School of Automation And Electrical Engineering,Lanzhou Jiaotong University Lanzhou,730070,China;Railway Safety Research Center of China State Railway Group Co.,Ltd.Beijing,100081,China)
出处 《振动.测试与诊断》 EI CSCD 北大核心 2023年第3期500-507,619,620,共10页 Journal of Vibration,Measurement & Diagnosis
基金 中国铁道科学研究院科研基金资助项目(2021YJ205)。
关键词 轨道电路 GG模糊聚类 退化状态划分 卷积神经网络-双向门控循环单元 故障预测 track circuit GG fuzzy clustering degradation state division convolutional neural network-bidirectional gated recurrent unit(CNN-BIGRU) fault prediction
  • 相关文献

参考文献5

二级参考文献56

  • 1董勋,郭亮,高宏力,刘宸宇,李磊.代价敏感卷积神经网络:一种机械故障数据不平衡分类方法[J].仪器仪表学报,2019,40(12):205-213. 被引量:22
  • 2周小勇,叶银忠.小波分析在故障诊断中的应用[J].控制工程,2006,13(1):70-73. 被引量:47
  • 3阿·米·布列也夫著.孙铭甫译.轨道电路的分析与综合[M].北京:中国铁道出版社,1981.
  • 4ANTONIO O, CLAYTON R P. FDTD Analysis of Lossy Multiconductor Transmission Lines Terminated in Arbi- trary Loads [J]. IEEE Transactions on Electromagnetic Compatibility, 1996,38(3) : 388-398.
  • 5RODEN J A , PAUL C R, SMITH W T, et al. Finite Difference Time Domain Analysis of Lossy Transmission Lines[J].IEEE Transactions on Electromagnetic Compati- bility, 1996,38(1): 15-24.
  • 6ZHOU Tingdong, STEVEN L D, JOHN L, et al. Trans- mission Line Simulation Based on Closed-form Triangle Impulse Responses[J]. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 2003,22(6) :748-755.
  • 7EDWARD C C, SUNG-Mo K. Computationally Efficient Simulation of a Lossy Transmission Line with Skin Effect by Using Numerical Inversion of Laplace Transform[J]. IEEE Transsetion on CAS-I,1992,39(11) ..861-868.
  • 8GRIFFITH J R, MICHEL S N. Time-domain Analysis Coupled Transmission Line[J]. IEEE Transactions on Mi- crowave Theory and Techniques, 1990, 38 (10): 1 480- 1 487.
  • 9KISHORE S, LACH J V. Computation of Time Domain Response by Numerical Inversion of the Laplace Trans- form[J]. Journal of the Franklin Institute, 1975,299(2):109-126.
  • 10FREDERICK M T. Development and Use of the BLT E- quation in theTime Domain as Applied to a Coaxial Cable [J]. IEEE Transactions on Electromagnetic Compatibili- ty,2007, 49(1) :3-11.

共引文献43

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部