期刊文献+

新型起重机缓冲防护用泡沫铝复合板性能研究

Study on the performance of aluminum foam composite panels for new crane buffering protective component
下载PDF
导出
摘要 响应国家聚焦绿色低碳的号召,研发新型材料替代传统缓冲器材料,采用Sn-4Zn钎料,通过超声辅助钎焊制备了泡沫铝复合板,分析了钎焊接头的微观组织,通过霍布金逊压杆(SHPB)装置研究了泡沫铝复合板的减载缓冲性能,使用Ansys对泡沫铝复合板在通用桥式起重机的工况下进行了模拟仿真。结果表明:超声钎焊制备的泡沫铝复合板存在良好的冶金结合,钎缝微观组织为β-Sn+Sn-Zn共晶+α-Al;泡沫铝复合板在冲击过程中存在良好缓冲吸能性能,适合用作吸能元件;在桥式起重机工况下,泡沫铝复合板呈现出优良的减载缓冲能力,能够满足作为二道防护构件用于桥式起重机。 In response to the national call to focus on green and low-carbon,new materials are developed to replace the traditional buffer materials,using Sn-4Zn brazing filler metal,the aluminum foam composite panels was prepared by ultrasonic-assisted brazing,and the microstructure of the brazed joint was analyzed.The unload and buffering performance of foam aluminum composite plate was studied through the split hobkinson pressure bar(SHPB)device,and be simulated under the working condition of general bridge crane byAnsys.The results show that themetallurgical bonding properties of aluminum foam composite panelsprepared by ultrasonic brazing is good,and the microstructure of the brazing seam isβ-Sn+Sn-Zn eutectic+α-Al.The aluminum foam composite panels have good buffering and energy absorption properties duringimpacting process,and itis suitable to use as absorbers energy element,under the condition of bridge crane,the aluminum foam composite panels shows excellent load shedding and buffering capacity,which can meet the requirements of using as a secondary protective component for bridge cranes.
作者 李静宇 佘宗宇 吴庆富 吴国耀 LI Jing-yu;SHE Zong-yu;WU Qing-fu;WU Guo-yao(Henan Weihua Heavy Machinery Co.,Ltd.,Changyuan 453400,China)
出处 《重型机械》 2023年第3期38-42,共5页 Heavy Machinery
关键词 缓冲元件 泡沫铝复合板 绿色低碳 cushioning element aluminum foam composite panel green and low carbon
  • 相关文献

参考文献7

二级参考文献48

  • 1桑建兵,邢素芳,刘波,张明路.橡胶缓冲器及其接触分析[J].河北工业大学学报,2006,35(1):21-24. 被引量:5
  • 2GB/T3811-2008起重机设计规范[S].
  • 3GIBSON L J. Mechanical behavior of metallic foams [J]. Annu Rev Mater Sci, 2000, 30(1): 191-227.
  • 4SUGIMURA Y, MEYER J, HE M Y, BARTSMITH H, GRENSTEDT J, EVANS A G On the mechanical performance of closed cell A1 alloy foams [J]. Acta Mater, 1997, 45(12): 5245-5259.
  • 5BROTHERS A H, DUNAND D C. Mechanical properties of a density-graded replicated aluminum foam [J]. Mater Sci Eng A, 2008, 489(1-2): 439-443.
  • 6BANHART J, SEELIGER H W. Aluminium foam sandwich panels: Manufacture, metallurgy and applications [J]. Adv Eng Mater, 2008, 10(9): 793-802.
  • 7SALVO L, BELEST1N P, MAIRE E, JACQUESSON M, VECCHIONACCI C, BOLLER E, BORNERT M, DOUMALIN P. Structure and mechanical properties of AFS sandwiches studied by in-situ compression tests in X-ray mierotomography [J]. Adv Eng Mater, 2004, 6(6): 411-415.
  • 8LEHMHUS D, BUSSE M, CHEN Y, BOMAS H, ZOCH H W.Influence of core and face sheet materials on quasi-static mechanical properties and failure in aluminium foam sandwich [J]. Adv Eng Mater, 2008, 10(9): 863-867.
  • 9NAMMI S K, MYLER P, EDWARDS G. Finite element analysis of closed-cell aluminium foam under quasi-static loading [J]. Mater Des, 2010, 31(2): 712-722.
  • 10BANHART J. Manufacture, characterisation and application of cellular metals and metal foams [J]. Prog Mater Sci, 2001, 46(6): 559-632.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部