期刊文献+

加强金融风险防控措施的技术问题研究

Research on the Technical Problems of Strengthening the Measures of Financial Risk Prevention and Control
下载PDF
导出
摘要 研究针对近年来中国NY银行的不良贷款情况,发现虽然各行贷款不良率呈现出逐年下降的趋势,但是贷款不良额仍未下降,呈现有增无减的态势,容易引发金融危机。为将金融风险控制在经济可以承受的范围之内,研究整理了国内外金融风险的研究现状,建立了银行金融风险防控预警指标体系,应用最小二乘支持向量机进行信用风险评估,并利用实证分析说明其方法的有效性。 Based on the non-performing loans of China’s NY Bank in recent years,the research finds that although the non-performing loan ratio of each bank has shown a downward trend year by year,the non-performing loan has not decreased,showing an increasing trend and it is easy to raise the financial crisis.In order to keep the financial risk within the reach of economy,this paper collates the research status of financial risk at home and abroad,establishes the early warning indicator system of bank financial risk prevention and control,applies the least squares support vector machine to assess the credit risk,and illustrates the effectiveness of its method by empirical analysis.
作者 宋慧玲 SONG Huiling(Department of Basic Teaching and Research,Harbin Finance University,Harbin Heilongjiang 150030,China)
出处 《金融理论与教学》 2023年第3期28-31,共4页 Finance Theory and Teaching
基金 黑龙江省教育科学规划重点课题“应用型本科院校发展多学科交叉课程的路径研究”(GJB1423322)资助。
关键词 银行 金融 风险 指标体系 最小二乘支持向量机 bank finance risk index system least squares support vector machine
  • 相关文献

参考文献2

二级参考文献19

  • 1王建成.我国宏观经济预警系统的预警方法研究:[学位论文].杭州:浙江大学,1999
  • 2Schlkopf S, Burges C J C, Smola A J. Advances in Kernel Methods: Support Vector Leaming. Cambridge: MIT Press, 1999.43~45
  • 3Cristianini N, Shawe-Taylor J. Introduction to Support Vector Machines. Cambridge: Cambridge University Press, 2000.52~76
  • 4Weston J, Elisseeff A, Schlkopf B. Use of the lo-norm with linear models and kernel methods. BIOWulf Technical Report, 2001.12p
  • 5Chapelle O, Vapnik V, Bousquet O, et al. Choosing kernel parameters for support vector machines. Machine Learning, http:∥citeseer. nj.nec.com/384397.html,2000
  • 6Weston J, Mukherjee S, Chapelle O, et al. Feature selection for svms. Advances in Neural Information Processing Systems, http:∥citeseer. nj.nec.com/326502.html,2000
  • 7陈帅,朱建宁,潘俊,侍洪波.最小二乘支持向量机的参数优化及其应用[J].华东理工大学学报(自然科学版),2008,34(2):278-282. 被引量:53
  • 8杨启文,蔡亮,薛云灿.差分进化算法综述[J].模式识别与人工智能,2008,21(4):506-513. 被引量:132
  • 9阎啸天,武穆清.基于最小二乘支持向量机的自适应差分进化算法[J].系统仿真学报,2009,21(7):1921-1925. 被引量:5
  • 10顾燕萍,赵文杰,吴占松.最小二乘支持向量机的算法研究[J].清华大学学报(自然科学版),2010,50(7):1063-1066. 被引量:142

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部