摘要
遥感影像变化检测是利用多时相影像确定一定时间内地物或现象的变化,提供地物空间变化的定性与定量信息。传统遥感影像变化检测方法主要基于地面纹理及空间特征的方法,存在着难以精确识别遥感影像中新增建筑物的问题,为此该文提出了一种基于UNet网络的遥感影像建筑物变化检测方法。首先,将轻量级高效通道注意力机制网络(efficient channel attention network,ECANet),注入到原UNet网络模型,调整并优化网络结构,提升影像分割的准确度。然后改进SENet网络参数,提高遥感影像中的建筑物变化检测的精度。该文在高分辨率数据集LIVER-CD上进行实验,结果表明,所提方法的语义分割准确度达到99.03%,建筑变化检测准确率达到98.62%。相比于其他方法,该方法增强了影像的有效特征,提升了遥感影像中地面建筑物的检测精度。
Remote sensing image change detection is to use multi-temporal images to determine the changes of objects or phenomena within a certain period of time,and to provide qualitative and quantitative information on spatial changes of objects.Traditional remote sensing image change detection methods are mainly based on ground texture and spatial features,which is difficult to accurately identify new buildings in remote sensing images.Therefore,this paper adopts a building change detection method based on UNet network.Firstly,the lightweight efficient channel attention network(ECANet)is injected into the original UNet network model to adjust and optimize the network structure and improve the accuracy of image segmentation.The parameters of SENet are then tuned to enhance the accuracy of building change detection in remote sensing images.Experiments on a high-resolution dataset LIVER-CD show that the accuracy of the proposed method reaches a semantic segmentation accuracy of 99.03%and a building change detection accuracy of 98.62%.Compared with other methods,the proposed method can effectively enhance the effective features of images and improve the detection accuracy of ground buildings in remote sensing images.
作者
尹美杰
倪翠
王朋
张广渊
YIN Meijie;NI Cui;WANG Peng;ZHANG Guangyuan(School of Information Science and Electric Engineering,Shandong Jiaotong University,Jinan 250357,Shandong,China;Institute of Automation,Shandong Academy of Sciences,Jinan 250013,Shandong,China)
出处
《应用科学学报》
CAS
CSCD
北大核心
2023年第3期448-460,共13页
Journal of Applied Sciences
基金
中国博士后科学基金(No.2021M702030)
山东省交通运输厅科技计划项目基金(No.2021B120)资助。
关键词
改进UNet
注意力机制
语义分割
遥感影像
建筑物变化检测
improved UNet
attentional mechanism
semantic segmentation
remote sensing image
building change detection