期刊文献+

Large eddy simulations of a turbulent mixing layer periodically excited with fundamental and third harmonic frequency

原文传递
导出
摘要 A better understanding of the mixing behavior of excited turbulent mixing layers is critical to a number of aerospace applications.Previous studies of excited turbulent mixing layers focused on single frequency excitation or the excitation with fundamental and its second harmonic frequency.There is a lack of detailed studies on applying low and higher frequency excitation.In this study,we have performed large-eddy simulations of periodically excited turbulent mixing layers.The excitation consists of a fundamental frequency and its third harmonic.We have used phase-averaging to identify the vortex structure and strength in the mixing layer,and we have studied the vortex dynamics.Two different vortex paring mechanisms are observed depending on the phase shift between the two excitation frequencies.The influence of these two mechanisms on the mixing of a passive scalar is also studied.It is found that exciting the mixing layer with these low and high frequencies has initially an adverse influence on the mixing process;however,it improves the mixing further downstream of the splitter plate with the excitation using a phase shift ofΔφ=πshowing the best mixing performance.The present works shed lights on the fundamental vortex dynamics,and has great potential for aeronautical,automotive and combustion engineering applications.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第5期33-40,共8页 中国航空学报(英文版)
基金 the financial support provided by the Deakin University,Australia the University of Canterbury,New Zealand (No. 452DISDZ)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部