期刊文献+

A Survey on Recent Advances and Challenges in Reinforcement Learning Methods for Task-oriented Dialogue Policy Learning 被引量:2

原文传递
导出
摘要 Dialogue policy learning(DPL)is a key component in a task-oriented dialogue(TOD)system.Its goal is to decide the next action of the dialogue system,given the dialogue state at each turn based on a learned dialogue policy.Reinforcement learning(RL)is widely used to optimize this dialogue policy.In the learning process,the user is regarded as the environment and the system as the agent.In this paper,we present an overview of the recent advances and challenges in dialogue policy from the perspective of RL.More specifically,we identify the problems and summarize corresponding solutions for RL-based dialogue policy learning.In addition,we provide a comprehensive survey of applying RL to DPL by categorizing recent methods into five basic elements in RL.We believe this survey can shed light on future research in DPL.
出处 《Machine Intelligence Research》 EI CSCD 2023年第3期318-334,共17页 机器智能研究(英文版)
基金 Innovation and Technology Fund(ITF),Government of the Hong Kong Special Administrative Region(HKSAR),China(No.PRP-054-21FX).
  • 相关文献

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部