期刊文献+

Masked Vision-language Transformer in Fashion 被引量:1

原文传递
导出
摘要 We present a masked vision-language transformer(MVLT)for fashion-specific multi-modal representation.Technically,we simply utilize the vision transformer architecture for replacing the bidirectional encoder representations from Transformers(BERT)in the pre-training model,making MVLT the first end-to-end framework for the fashion domain.Besides,we designed masked image reconstruction(MIR)for a fine-grained understanding of fashion.MVLT is an extensible and convenient architecture that admits raw multimodal inputs without extra pre-processing models(e.g.,ResNet),implicitly modeling the vision-language alignments.More importantly,MVLT can easily generalize to various matching and generative tasks.Experimental results show obvious improvements in retrieval(rank@5:17%)and recognition(accuracy:3%)tasks over the Fashion-Gen 2018 winner,Kaleido-BERT.The code is available at https://github.com/GewelsJI/MVLT.
出处 《Machine Intelligence Research》 EI CSCD 2023年第3期421-434,共14页 机器智能研究(英文版)
  • 相关文献

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部