期刊文献+

基于孪生网络的自监督细粒度分类度量

Self-supervised fine-grained classification metrics based on twin networks
下载PDF
导出
摘要 针对小样本间的细粒度分类中同种样本间不同个体的差异性不明显,导致特征难以提取的问题,设计了使用自监督的抠图式度量学习图像分类建模训练方法,在不增加数据集人工标注成本的基础上提高分类精度.首先,将数据集进行抠图处理,扩大检测目标在图像中的占比,突出样本特征.其次,通过比较网络结构模型及距离度量函数,择优对模型进行改进.最后,采用孪生网络的思想将样本集和验证集输入特征提取器中通过度量函数的计算得到两者相似度.选用的样本集为公开数据集CUB_200_2011和Standford Dogs Dataset,实验结果显示,提出的方法在性能和精度上得到了较好提升. To address the problem of inconspicuous variability of different individuals among the same samples in fine-grained classification among small samples,which makes feature extraction difficult,a training method using self-supervised keying-based metric learning image classification modeling was designed to improve classification accuracy without increasing the cost of manual labeling of datasets.First,the dataset was keyed to expand the proportion of detection targets in the image and highlight the sample features.Secondly,the model was improved by comparing the network structure model and distance metric function,and the model was improved by merit.Finally,the twin network idea was used to input the sample set and the validation set into the feature extractor to obtain the similarity between them through the calculation of the metric function.The selected sample sets were the public dataset CUB_200_2011 and Standford Dogs Dataset,and the experimental results showed that the proposed method had a better performance and accuracy improvement.
作者 石晶晶 周绪川 蒋凤霞 SHI Jing-jing;ZHOU Xu-chuan;JIANG Feng-xia(Key Laboratory of Computer System of State Ethnic Affairs Commission,Southwest Minzu University,Chengdu 610041,China)
出处 《西南民族大学学报(自然科学版)》 CAS 2023年第3期297-302,共6页 Journal of Southwest Minzu University(Natural Science Edition)
基金 西南民族大学中央高校基本科研业务费专项基金项目(2020NYB41)。
关键词 孪生网络 细粒度 度量函数 自监督 twin network fine-grained classification metric function self-supervised
  • 相关文献

参考文献4

二级参考文献30

  • 1张华.基于空间颜色特征的行人重识别方法[J].华中科技大学学报(自然科学版),2013,41(S2):209-212. 被引量:11
  • 2杨绪兵,陈松灿,杨益民.局部化的广义特征值最接近支持向量机[J].计算机学报,2007,30(8):1227-1234. 被引量:10
  • 3Xing E P,Ng A Y,Jordan M I. Distance metric learning with application to clustering with side-information[J].Advances in Neural Information Process ing Systems,2002.521-528.
  • 4Weinberger K Q,Saul L K. Distance metric learning for large margin nearest neighbor classification[J].Journal of Machine Learning Research,2009.207-244.
  • 5Cover T,Hart P. Nearest neighbor pattern classification[J].IEEE Transactions on Information theory,1967.21-27.
  • 6Chopra S,Hadsell R,LeCun Y. Learning a similiarty metric discriminatively,with application to face verification[A].San Diego,California,USA,2005.539-546.
  • 7Domeniconi C,Gunopulos D,Peng J. Large margin nearest neighbor classifiers[J].IEEE Transactions on Neural Networks,2005,(04):899-909.doi:10.1109/TNN.2005.849821.
  • 8Goldberger J,Roweis S,Hinton G. Neighbourhood components analysis[A].Cambridge:MIT Press,MA,2005.513-520.
  • 9Huang K,Yang H,King I. Learning large margin classifiers locally and globally[A].Banff,Canada,2004.260-272.
  • 10Yeung D S,Wang D,Ng W W Y. Structured large margin machines=Sensitive to data distribu tions[J].Machine Learning,2007.171-200.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部