期刊文献+

基于点云中心约束的点对特征三维物体识别算法

A Fast 3D Object Recognition Algorithm Based on Point Cloud Center Constrained Point Pair Feature
下载PDF
导出
摘要 目标姿态识别系统中能够快速、准确在复杂场景里识别目标物体是实现机器人在线抓取的关键,针对传统点对特征(PPF)算法相邻物体点云干扰的问题,提出了一种基于点云中心约束点对特征的三维物体识别算法。首先通过法向量相交约束为条件提取物体中心,然后根据模型的大小筛选出相关的点对特征,最后利用共面点对和物体中心特征,实现计算三维物体的姿态,以此来提高识别速度。实验结果表明,该算法显著减少特征描述符数量,提高了三维物体在复杂场景中的识别速度。与原始的点对特征算法相比,该方法对三维目标识别具有较好的性能与速度。 In the target pose recognition system,the ability to quickly and accurately identify the target object in complex scenes is the key issue to realize the robot′s online grasping.Aiming at the problem of point cloud interference of adjacent objects in the traditional point pair feature(PPF)algorithm,a 3D object recognition algorithm based on point cloud center constraint point pair feature is proposed.Firstly,the center of the object is extracted based on the normal vector intersection constraint,and then the relevant point pair features are screened according to the size of the model.Finally,the coplanar point pair and the object center feature are used to calculate the pose of the three-dimensional object,so as to improve the recognition speed.Experimental results show that the algorithm significantly reduces the number of feature descriptors and improves the recognition speed of 3D objects in complex scenes.Compared with the original point pair feature algorithm,this method has better performance and speed for 3D target recognition.
作者 邓仕超 杨龙 梁晨光 高兴宇 蒋应良 DENG Shichao;YANG Long;LIANG Chenguang;GAO Xingyu;JIANG Yingliang(Guangxi Key Lab of Manufacturing Systems and Advanced Manufacturing Technology,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《组合机床与自动化加工技术》 北大核心 2023年第6期27-30,34,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 广西创新驱动发展专项基金项目(AA18118002-3)。
关键词 三维物体识别 点对特征 点云中心 法向量 3D object recognition point pair feature point cloud center normal vector
  • 相关文献

参考文献7

二级参考文献39

  • 1杨蕊红,潘泉,程咏梅.三维飞机目标识别的一种新方法[J].计算机仿真,2006,23(6):82-84. 被引量:4
  • 2孙剑峰,李琦,陆威,王骐.基于数字信号处理器的激光成像雷达目标识别算法实现[J].中国激光,2006,33(11):1467-1471. 被引量:15
  • 3Mashor M Y, Osman M K, Arshad M R. 3D Object Recog nition Using 2D Moments and HMLP Network[C]//Proc of the Int'l Conf on Computer Graphics, Imaging and Visualization (CGIV'04), 2004,2178 :04-08.
  • 4Vasile A N, Marino R M. Pose-Independent Automatic Target Detection and Recognition Using 3D Laser Radar Imagery [J].Lincoln LaboratoryJournal, 2005, 15(1) :61-78.
  • 5Mahalanobis A, Nevel A J V. Performance of Multidimen sional Algorithms for Target Detection in LADAR Imagery [C]//Proc of SPIE on Algorithms and Systems for Optical Information Processing, 2002, 4789:134- 147.
  • 6Gronwall C, Chevalier T, Persson A, et al. Methods for Recognition of Natural and Man-Made Objects Using Laser Radar Data[C]//Proc of SPIE on Laser Radar Technology and Applications IX, 2004, 5412:310-320.
  • 7Gronwall C, Gustafsson F, Millnert M, et al. Ground Target Recognition Using Rectangle Estimation [J ]. IEEE2 Trans on Image Processing, 2006, 15(11):3401- 3409.
  • 8Gronwall C, Andersson P, Gustafsson F, et al. I.east Squares Fitting of Articulated Objects[C] // Proc of the 2005 IEEE Computer Society Conf on Computer Vision and Pattern Recognition, 2005, 6919:05- 09.
  • 9Neulista J, Armbruster W. Segmentation, Classification, and Pose Estimation of Military Vehicles in Low Resolution Laser Radar Images[C]//Proc of SPIE on Laser Rada rTechnology and Applications X, 2005, 5791:218 225.
  • 10Besl J, Mckay D. A Method for Registration of 3-D Shapes[J].IEEE Trans on Pattern Anaylysis and Machine Intelligence, 1992,14(2) :239 256.

共引文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部