期刊文献+

基于蜂窝镶嵌网格的离散变量拓扑优化

Topology Optimization with Discrete Variables Based on Honeycomb Tessellation Mesh
下载PDF
导出
摘要 针对基于传统四边形网格划分的SIMP连续变量拓扑优化方法存在的棋盘格、结构点连接导致的零刚度和中间密度等问题,提出基于蜂窝镶嵌网格有限元划分方法,采用离散变量拓扑优化算法,在二维平面上展开拓扑优化方法的深入研究;在蜂窝镶嵌网格法划分的基础上引入离散变量优化算法求解,使所提出的方法(HoneyDVTOP)结合两者的优势,获得结构清晰、边界简洁、不存在中间密度的拓扑优化结构;最后,使用所提出的方法对MBB梁进行不同网格规模下的拓扑优化实验。结果表明,根据所提出的方法与拓扑方法HoneyTop进行对比,在3种不同网格规模的MBB梁和悬臂梁力学模型下刚度性能分别提升4.34%、10.56%和19.84%以及8.70%、20.98%和26.99%。随着网格规模变大,刚度的提升效果愈加明显。 Aiming at the problems of checkerboard and zero-stiffness and intermediate density caused by the structural points connection in SIMP continuous variable topology optimization method based on traditional quadrilateral mesh partition,this paper proposes the honeycomb mesh finite element method,and uses discrete variable topology optimization algorithm to carry out in-depth research on the topology optimization method on a two-dimensional plane.The discrete variable optimization algorithm is introduced to solve the problem based on the HoneyDVTOP method,so that the proposed method(HoneyDVTOP)combines the advantages of the two methods to obtain a topology optimization structure with clear structure,simple boundary and no intermediate density.Finally,the proposed method is used to conduct experiments on the topology optimization of MBB beams with different grid sizes.The results show that compared with the topological method HoneyTop,the stiffness performance of the proposed method is improved by 4.34%、10.56%and 19.84%,and 8.70%、20.98%and 26.99%respectively under three different mesh sizes of MBB beam and cantilever beam mechanical models.As the size of the grid becomes larger,the improvement effect of the stiffness becomes more obvious.
作者 陈庆杰 张胜辉 李海艳 周健松 张健林 CHEN Qingjie;ZHANG Shenghui;LI Haiyan;ZHOU Jiansong;ZHANG Jianlin(School of Electromechanical Engineering,Guangdong University of Technology,Guangzhou 510006,China;Guangdong Provincial Key Laboratory of Computer Integrated Manufacturing,Guangdong University of Technology,Guangzhou 510006,China)
出处 《组合机床与自动化加工技术》 北大核心 2023年第6期123-127,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然基金项目(51975125)。
关键词 蜂窝镶嵌网格 有限元 离散变量 拓扑优化 六边形网格 honeycomb tessellation mesh finite element discrete variable topology optimization hexagonal mesh
  • 相关文献

参考文献5

二级参考文献27

  • 1Mitsuo Gen,KwanWoo Kim,Genji Yamazaki.Project Scheduling Using Hybrid Genetic Algorithm with Fuzzy Logic Controller in SCM Environment[J].Tsinghua Science and Technology,2003,8(1):19-29. 被引量:1
  • 2陆丹,刘毅.功能梯度材料拓扑优化研究[J].科技导报,2007,25(7):38-40. 被引量:3
  • 3Han Y S, Guo P F. A hybrid genetic algorithm for structural optimization with discrete variables[A]. Proceedings of the First China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical System [C]. Xi'an: Xidian University Press, 1999. 157- 164.
  • 4Rafiq M Y, Southcombe C. Genetic algorithms in optimal design and detailing Of reinforced concrete biaxial columns supported by a declarative approach for capacity checking[ J ].Computer & Structures, 1998,69(4) :443 - 457.
  • 5Yan W, Hong W S, Sun Y K. A hybrid genetic algorithm based on mutative scale chaos optimization strategy [ J ].Journal of University of Science and Technology Beijing,2002.9(6) :470 - 473.
  • 6Chien S, Yang Z W, Hou E. Genetic algorithm approach for transit route planning and design [ J ]. Journal of Transportation Engineering, 2001,127(3) :200 - 207.
  • 7Choi B K, Yang B S. Optimal design of rotor-bearing systems using immune-genetic algorithm [ J ]. Journal of Vibration and Acoustics, 2001,123(3) : 398 - 400.
  • 8Strasmer T, Busold M, Herrmann W A. MM3 parameterization of four-and five-coordinated rhenium complexes by a genetic algorithm [ J ]. Journal of Computational Chemistry, 2002,23(2) : 282 - 290.
  • 9周向阳,陈立平,黄正东.用SIMP-SRV方法进行柔性机构拓扑优化设计[J].中国机械工程,2008,19(6):631-635. 被引量:9
  • 10卜鹤群,姚卫星.结构拓扑优化的一种改进的变密度插值法[J].江苏航空,2011(S1):23-26. 被引量:4

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部