摘要
【目的】随着互联网、人工智能、云计算等技术的快速发展,视频、图像等文件的数据量也日益增长,探究选择合适的关键技术对这些数据中蕴含的有用信息进行挖掘。【方法】基于图卷积神经网络对人体3D骨架关键节点各种行为进行识别和研究,在MSR-Action 3D数据集中对骨架特征增强图卷积网络模型与近5年常用的人体行为识别算法识别行为的准确率进行对比。【结果】研究结果表明,骨架特征增强图卷积网络模型对人体行为识别的准确率最高。【结论】骨架特征增强图卷积网络模型为后期智慧交通领域的人体异常行为识别提供有价值的参考。
[Purposes]With the rapid development of Internet,artificial intelligence,cloud computing and other technologies,the amount of data such as videos and images is also increasing.[Methods]Based on the graph convolutional neural network,various behaviors of key nodes of human 3D skeleton are identified and studied.In the MSR-Action 3D data set,the accuracy of the skeleton feature enhanced graph convolutional network model and the human behavior recognition algorithm commonly used in the past five years is compared.[Findings]The results show that the skeleton feature enhanced graph convolutional network model has the highest accuracy in human behavior recognition.[Conclusions]The skeleton feature enhanced graph convolutional network model provides a valuable reference for human abnormal behavior recognition in the field of intelligent transportation.
作者
王瑜琳
钱欣丽
徐晓灵
洪政
宋涛
WANG Yulin;QIAN Xinli;XU Xiaoling;HONG Zheng;SONG Tao(Chongqing Vocational College of Public Transportation,Chongqing 402260,China;Chongqing University of Technology,Chongqing 401320,China)
出处
《河南科技》
2023年第11期18-23,共6页
Henan Science and Technology
基金
重庆市教委科学技术研究计划项目“面向疫情防控的轨道交通乘客接触关系大数据追踪方法研究”(KJQN202005801)
重庆公共运输职业学院院级科研项目“基于骨骼结构—神经网络的人体行为识别方法研究”(YSKY2021-07)
重庆公共运输职业学院现代学徒制试点项目“交通智能化数字工程技术人员‘现代学徒制’班”
重庆公共运输职业学院第一批青年骨干教师培养计划。
关键词
人工智能
图卷积
神经网络
异常行为识别
artificial intelligence
graph convolution
neural network
abnormal behavior identification