期刊文献+

利用多尺度特征的极化SAR深度学习分类 被引量:1

Polarimetric SAR Deep Learning Classification Using Multi-scale Features
下载PDF
导出
摘要 针对极化合成孔径雷达(POLSAR)图像提取到的特征信息量低和噪声干扰等问题,提出了一种对不同特征信息进行多尺度融合的方法,并利用融合后的特征,通过深度学习网络算法进行目标地物分类。首先利用小波变换技术对Freeman、Yamaguchi等极化分解得到的特征分量在不同尺度上进行融合,再利用主成分分析(PCA)降维算法处理融合后的数据,最后输入到DeepLabV3网络结构中训练。利用该方法对白湖农场地区高分三号全极化SAR数据进行验证,对比融合前后的分类结果,提出的算法在分类精度上有明显的提升,证明了该方法的有效性。 Aiming at the problem of low feature information and noise interference extracted from polarimetric synthetic aperture radar(POLSAR)images,in this paper a multi-scale fusion method for different feature information is proposed,and the fused features are used to classify target by deep learning network algorithm.Firstly,feature components obtained from polarization decomposition such as Freeman and Yamaguchi are fused on different scales by wavelet transform technology,and then principal component analysis(PCA)dimension reduction algorithm is used to process the fused data,and finally DeepLabV3 network structure is input for training.Moreover,the full-polarization SAR data of Gaofen-3 in baihu farm area is used for verification,and the classification results before and after fusion are compared.The classification accuracy of the algorithm proposed in this paper has been improved significantly,which proved the effectiveness of the method.
作者 赵文慧 俞宣 杨中傲 尹治平 张倾远 ZHAO Wenhui;YU Xuan;YANG Zhongao;YIN Zhiping;ZHANG Qingyuan(School of Electronic Science and Applied Physics,Hefei University of Technology,Hefei Anhui 230009,China;Academy of Opto-electric Technology,Hefei University of Technology,Hefei Anhui 230009,China;School of Information Science and Technology,University of Science and Technology of China,Hefei Anhui 230026,China)
出处 《现代雷达》 CSCD 北大核心 2023年第4期48-54,共7页 Modern Radar
基金 国家自然科学基金面上资助项目(61971392)。
关键词 极化合成孔径雷达 极化特征 多尺度融合 深度学习 目标分类 polarimetric synthetic aperture radar polarization characteristics multi-scale fusion deep learning target classification
  • 相关文献

参考文献6

二级参考文献90

共引文献100

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部