期刊文献+

永磁同步电机电流预测控制静差消除方法及其灵敏度分析

Static Error Elimination Method and its Sensitivity Analysis of PMSM Current Predictive Control
下载PDF
导出
摘要 传统的电流预测控制(dPCC)在电机实际参数与模型参数不一致以及逆变器死区等非理想因素的影响下会存在如电流跟随速度减慢、震荡以及稳态误差等问题,会大大影响永磁同步电机的控制性能。本文针对带有延时补偿的电流预测控制提出了一种误差消除方法,采用dPCC与积分补偿结合的方法消除了稳态误差,提高了鲁棒性。考虑到积分补偿会影响dPCC算法的收敛域,本文采用z域分析方法,通过传递函数的方法对所提出算法进行了关于电阻、电感以及磁链误差的灵敏度分析。文章最后通过Matlab/Simulink仿真验证了所提出方法的有效性和正确性。 The traditional current predictive control(dPCC)has some problems,such as current following speed slowing down,oscillation and steady state error,when the actual parameters of the motor are not in accordance with the model parameters and the dead time of the inverter is not ideal,it will greatly affect the control performance of PMSM.This paper presented an error elimination method for current predictive control with time-delay compensation,which combined dPCC with integral compensation to eliminate steady-state error and improve robustness.Considering the influence of integral compensation on the convergence region of dPCC algorithm,the Z-domain analysis method was adopted in this paper,the sensitivity analysis of the resistance,inductance and flux error of the proposed algorithm was carried out by the method of transfer function.Finally,the validity and correctness of the proposed method were verified by Matlab/Simulink simulation.
作者 林立 王桐 刘艺凡 柳舟洲 张鹏涛 李轶伟 LIN Li;WANG Tong;LIU Yifan;LIU Zhouzhou;ZHANG Pengtao;LI Yiwei(Xi’an Micromotor Research Institute,Xi’an 710077,China;The Eighth Military Representitive Office of Land Equipment Department Xi’an Bureau,Xi’an 710043,China)
出处 《微电机》 2023年第5期53-57,共5页 Micromotors
关键词 电流预测 误差消除 积分补偿 current predictive error elimination integral compensation
  • 相关文献

参考文献1

二级参考文献23

  • 1Kazmierkowski M P, Malesani L. Current control techniques for three-phase voltage-source PWM converters: A survey[J]. IEEE Trans. on Industrial Electronics, 1998, 45(5): 691-703.
  • 2Casadei D, Profumo F, Serra G, et al. FOC and DTC: two viable schemes for induction motors torque control [J]. IEEE Transactions on Power Electronics, 2002, 17(5):779-787.
  • 3Moreno J C, HuertaJME, GilRG, et al. Arobust predictive current control for three-phase grid-connected inverters[J]. IEEE Trans. on Industry Electronics, 2009, 56(6): 1993-2004.
  • 4Rodriguez J, Pontt J, Silva C A, et al. Predictive current control of a voltage source inverter[J]. IEEE Trans. on Industry Electronics, 2007, 54(1): 495-503.
  • 5Bolognani S, Bolognani S, Peretti L, et al. Design and implementation of model predictive control for electrical motor drives[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1925-1936.
  • 6Naouar M W, Monmasson E, Naassani A A, et al. FPGA-based current controllers for ac machine drives-a review[J]. IEEE Transactions on Industrial Electronics, 2007, 54(4): 1907-1925.
  • 7Gan L, Wang L. Cascaded model predictive position control of induction motor with constraints[C]//39th Annual Conference on IEEE Industrial Electronics (IECON). Vienna, Austria: IEEE, 2013: 2656-2661.
  • 8Nemec M, Drobnic K, Nedeljkovic D, et al. Direct current control of a synchronous macl~ine in field coordinates[J]. IEEE Trans. on Industry Electronics, 2009, 56(10): 4052-4061.
  • 9Cimini G, Fossi V, lppoliti G, et al. Model predictive control solution for permanent magnet synchronous motors[C]//39th Annual Conference on IEEE Industrial Electronics(IECON). Vienna, Austria: IEEE, 2013: 5824-5829.
  • 10Morel F, Xuefang Lin-Shi, Retif J M, et al. A comparative study of predictive current control schemes for a permanent magnet synchronous machine drive[J]. IEEE Trans. on Industrial Electronics, 2009, 56(7): 2715-2728.

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部