期刊文献+

车联网场景下基于内容中心网络的优化缓存策略

Optimized Caching Strategy Based on Content Centric Networking in Internet of Vehicles
下载PDF
导出
摘要 车联网中,如何有效选择缓存位置和缓存内容对于提高整体网络性能至关重要。针对上述问题,引入了内容中心网络技术,提出了一种新的优化缓存策略——缓存位置和缓存内容的选择取决于车辆节点值和内容流行度(Vehicle Node Value and Content Popularity,VNVCP)。首先,定义了连通性、中间中心性和特征向量中心性3个车辆节点属性用来评估车辆节点的值,具有不同值的车辆节点缓存具有不同流行度的内容,内容的重要性由其受欢迎程度决定。其次,该策略利用不同类型内容受欢迎程度的差异确保缓存内容分布均匀,同时评估来自多个属性的车辆节点的值以提高车辆节点利用率。仿真结果表明,VNVCP在缓存命中率、平均跳数和传输延迟方面明显优于传统的LCE(Leave Copy Every where)、Prob(0.5)和MPC(Most Popular Content)。 In Internet of Vehicles(IoT),how to effectively select the cache location and content is very important for improving the overall network performance.To solve the above problems,the Content Centric Networking(CCN)technology is introduced and a new optimized caching strategy is proposed.The selection of cache location and cache content depends on Vehicle Node Value and Content Popularity(VNVCP).Firstly,three vehicle node attributes about connectivity,betweenness centrality and eigenvector centrality are defined to evaluate the vehicle node values.The vehicle nodes with different values cache the content with different popularity.The importance of content is determined by its popularity.Secondly,the proposed strategy utilizes the popularity differences of different types of content to ensure uniform distribution of cached content,and evaluates the values of vehicle nodes from multiple attributes to improve the utilization of vehicle nodes.The simulation results show that the proposed VNVCP is significantly better than traditional Leave Copy Everywhere(LCE),Prob(0.5)and Most Popular Content(MPC)in cache hit rate,average hop count and transmission delay.
作者 顾金媛 章国安 张鸿来 GU Jinyuan;ZHANG Guoan;ZHANG Honglai(Kangda College of Nanjing Medical University,Lianyungang 222061,China;School of Information Science and Technology,Nantong University,Nantong 226019,China)
出处 《电讯技术》 北大核心 2023年第6期768-774,共7页 Telecommunication Engineering
基金 国家自然科学基金资助项目(61971245) 教育部产学合作协同育人项目(202102311004) 江苏省第十六批“六大人才高峰”高层次人才选拔培养资助项目(XYDXX-245) 江苏高校“青蓝工程”资助项目 连云港市第六期“521高层次人才培养工程”培养对象资助项目 南京医科大学康达学院科研人才培养计划资助项目。
关键词 车联网(IoV) 内容中心网络 缓存策略 内容流行度 Internet of Vehicles(IoV) content centric networking caching strategy content popularity
  • 相关文献

参考文献2

二级参考文献22

  • 1Zhang L X,Estrin D,Burke J,et al.Named Data Networking (NDN) project[R].California:PARC,2010.
  • 2Koponen T,Chawla M,Chun B.G,et al.A data-oriented (and beyond) network architecture[J].SIGCOMM Comput Commun Rev,2007,37(4):181-192.
  • 3Lagutin D,Visala D,Tarkoma S.Publish/subscribe for internet:Psirp perspective[R].Towards the Future Internet Emerging Trends from European Research,2010(4):75-84.
  • 4Laoutaris N,Syntila S,Stavrakakis I.Meta algorithms for hierarchical web caches.Proceedings of 2004 IEEE International Conference on Performance,Computing,and Communications[C].Phoenix,2004.445-452.
  • 5Chae Y,Guo K,Buddhikot M M,et al.Silo,rainbow,and caching token:Schemes for scalable,fault tolerant stream caching[J].Selected Areas in Communications,IEEE Journal on,2002,20(7):1328-1344.
  • 6Zhang G,Li Y,Lin T.Caching in information centric networking:a survey[J].Computer Networks,2013,57(16):3128-3141.
  • 7Long Y,Fan L,Yan Z.Off-path and on-path collaborative caching in named data network.Proceedings of AsiaFI[C].Kyoto,2012.1-8.
  • 8Vassilakis V G,Al-Naday M F,Reed M J,et al.A cache-aware routing scheme for information-centric networks.Proceedings of 2014 9th International Symposium on Communication Systems,Networks & Digital Signal Processing (CSNDSP)[C].Manchester,2014:721-726.
  • 9Psaras I,Chai,Wei Koong,Pavlou G.Probabilistic in-network caching for information-centric networks.Proceedings of the Second Edition of the ICN Workshop on Information-centric Networking[C].Helsinki,2012.55-60.
  • 10Cho K,Lee M,Park K,et al.Wave:Popularity-based and collaborative in-network caching for content-oriented networks.Proceedings of 2012 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)[C].Orlando,2012.316-321.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部