摘要
当前卷积神经网络模型运用在实验室长文本分类时,存在着特征提取不恰当、语义信息表示不完全而导致的分类不准确的问题。为了解决这一问题,文中通过构建上下文感知自适应卷积网络(CACN),采用多尺度卷积核对潜在特征进行融合,从而更好地提取单词特征的上下文信息。为验证该方法的有效性,在三个公开长文本数据集上对改进后的CACN文本分类方法进行了性能评估,在AG News、Yelp_F、Yelp_P三个长文本数据集上分类准确率分别达到了92.6%、65.5%、95.8%。
The current convolutional neural network model has the problem of inaccurate classification due to inappropriate feature extraction and incomplete representation of semantic information when it is applied to classification of long text in the laboratory.In order to deal with this problem,a context⁃aware adaptive convolutional network(CACN)is constructed in this paper,which uses multi⁃scale convolutional kernels to fuse potential features,so as to better extract the contextual information of word features.To verify the effectiveness of the method,the performance of the text classification method based on improved CACN is evaluated on three publicly available long⁃text datasets,and the classification accuracy of the method can reach 92.6%,65.5%and 95.8%on the three long⁃text datasets(AG News,Yelp_F and Yelp_P)respectively.
作者
郑文丽
熊贝贝
林燕奎
蔡伊娜
包先雨
王歆
ZHENG Wenli;XIONG Beibei;LIN Yankui;CAI Yina;BAO Xianyu;WANG Xin(Shenzhen Academy of Inspection and Quarantine,Shenzhen 518045,China)
出处
《现代电子技术》
2023年第13期85-90,共6页
Modern Electronics Technique
基金
国家重点研发计划课题(2019YFC1605504)
深圳市科技计划项目(JSGG20220606140201003)。
关键词
文本分类
上下文感知
自适应卷积网络
特征融合
信息提取
性能评估
text classification
context⁃aware
adaptive convolutional network
feature fusion
information extraction
performance assessment