摘要
三维点云为无人机在做树障分析过程中的关键数据,能有效的表示物体特征信息。点云分类,是指通过物体属性特征对周围事物和状态的分类标记,给每个点划分一种语义标记,从而识别特定物体。文章在点云分类任务分析的研究基础上,通过国内外研究成果对分类技术加以归纳,并分别介绍了四种分类技术的基本概念,详尽阐述了四种划分方式和常见的划分技术以及进行研究,并分析归纳了各个分类技术不足之处,针对当前分类技术的发展状况,介绍了点云分析技术的发展热点与未来发展趋势。
3Dpoint cloud is the key data of UAVin the process of tree obstacle analysis,which can effectively represent the object feature information.Point cloud classification refers to the classification and marking of surrounding things and states by attribute features,and the division of a semantic mark for each point.Based on the research of point cloud classification task analysis,the classification technology is summarized through domestic and foreign research results,and the basic concepts of the three classification technologies are introduced,the three classification methods and common classification technologies are elaborated,and the research is carriedout,and the shortcomings are analyzed and summarized.According tothe current development of classification technology,this paper introduces the development hotspot and future development of point cloud analysis technology.
作者
杨义乾
YANG Yiqian(China Three Gorges University,Yichang,Hubei 443000)
出处
《长江信息通信》
2023年第5期40-42,46,共4页
Changjiang Information & Communications
关键词
激光雷达
点云分类
深度学习
关键应用
laser radar
Point cloud classification
Deep learning
Key applications