期刊文献+

Controlled sintering for cadmium stabilization by beneficially using the dredged river sediment

原文传递
导出
摘要 Cd-bearing solid wastes are considered to be a serious threat to the environment,and effective strategies for their treatment are urgently needed.Ceramic sintering has been considered as a promising method for efficiently incorporating heavy metal-containing solid wastes into various ceramic products.Mineral-rich dredged river sediment,especially Al and Si-containing oxides,can be treated as alternative ceramic precursors rather than being disposed of as solid wastes.To examine the feasibility of using waste sediment for Cd stabilization and the phase transition mechanisms,this study conducted a sintering scheme for the mixtures of CdO and dredged river sediment with different(Al+Si):Cd mole ratios.Detailed investigations have been performed on phases transformation,Cd incorporation mechanisms,elemental distribution,and leaching behaviors of the sintered products.Results showed that Cd incorporation and transformation in the sintered products were influenced by the mole ratio of(Al+Si):Cd.Among the high-Cd series((Al+Si):Cd=6:1),CdSiO_(3),Cd_(2)SiO_(4),CdAl_(2)(SiO_(4))_(2) and Cd_(2)Al_(2)Si_(2)O_(9) were predominant Cd-containing product phases,while Cd2Al2Si2O9 was replaced by CdAl_(4)O_(7) when the mole ratio of(Al+Si):Cd was 12:1(low-Cd series).Cd was efficiently stabilized in both reaction series after being sintered at≥900℃,with<5%leached ratio even after a prolonged leaching time,indicating excellent long-term Cd stabilization.This study demonstrated that both Cd-containing phases and the amorphous Al-/Si-containing matrices all played critical roles in Cd stabilization.A promising strategy can be proposed to simultaneously reuse the solid waste as ceramic precursors and stabilize heavy metals in the ceramic products.
出处 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第5期105-115,共11页 环境科学与工程前沿(英文)
基金 financially supported by the National Key R&D Program of China(No.2018YFC1902904) the National Natural Science Foundation of China(Nos.21707063 and 41977329) the Research Grants Council of Hong Kong(China)(Project T21-771/16R) Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control(China)(No.2017B030301012) The authors are sincerely grateful for the assistance of SUSTech Core Research Facilities(China).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部