期刊文献+

基于改进交叉双边滤波的红外与可见光图像融合算法

Infrared and Visible Image Fusion based on the Improved Version of Cross Bilateral Filtering
下载PDF
导出
摘要 针对传统交叉双边滤波(CBF)算法在红外与可见光图像的融合过程中存在的噪声以及细节信息缺失等问题,提出一种基于非下采样剪切波变换(NSST)和特征提取来改进交叉双边滤波的图像融合算法.首先,应用NSST对两幅源图像进行处理,计算源图像与处理后图像的差值图像,并将差值图像叠加到源图像得到两幅预处理图像.其次,对两幅预处理图像进行交叉双边滤波,并与其计算差值融合得到细节图,对细节图和预处理图进行加权平均融合,得到初步融合图像,应用直方图均衡化和中值滤波对两幅源图像进行特征提取得到两个特征图,并采取绝对值取大融合特征图.最后,对融合后的特征图与初步融合图像取平均得到最终的融合图像.实验结果表明该算法在视觉效果和评价指标上均明显优于传统的融合算法. Aiming at the problems of obvious noise and loss of details in the fusion of infrared and visible images by the traditional cross bilateral filtering algorithm,an image fusion algorithm based on the improved cross bilateral filtering.Firstly,two source images are processed by non-subsampled shearlet transform,the difference image between the source image and the processed image was calculated,and the difference image was added back to the source image to obtain two preprocessed images.Secondly,the two preprocessed images are crossed bilateral filtering,and the calculation difference between them was calculated into the detail image.The weighted average fusion of detail image and preprocessing image was carried out to obtain the preliminary fusion image.Then,histogram equalization and median filtering are used to extract the two source images to get the two feature images,and the feature images are fused according to the maximum of absolute values.Finally,the final fusion image was obtained by means of the fused feature image and the initial fusion image.Experimental results show that the proposed algorithm was obviously superior to the traditional fusion algorithm in terms of visual effects and objective evaluation indexes.
作者 陈金凤 郭立强 CHEN Jin-feng;GUO Li-qiang(School of Computer Science and Technology,Huaiyin Normal University,Jiangsu Huaian 223300,China;Huaian Key Laboratory of Big Data Intelligent Computing and Analysis,Huaiyin Normal University,Jiangsu Huaian 223300,China)
出处 《淮阴师范学院学报(自然科学版)》 CAS 2023年第2期104-109,共6页 Journal of Huaiyin Teachers College;Natural Science Edition
基金 江苏省计算机学会教学类专项资金项目(JSCS2022051) 江苏省高等教育学会高校实验室年度课题(GS2022YB08) 江苏省大学生实践创新训练计划项目(202210323014Z)。
关键词 图像融合 交叉双边滤波 非下采样剪切波 特征提取 image fusion cross bilateral filtering nonsubsampled shearlet feature extraction
  • 相关文献

参考文献4

二级参考文献19

  • 1胡良梅,高隽,何柯峰.图像融合质量评价方法的研究[J].电子学报,2004,32(F12):218-221. 被引量:100
  • 2沈清.神经网络应用技术[M].长沙:国防科技大学出版社,1993..
  • 3Li H,Graphical Models Image Processing,1995年,57卷,3期,235页
  • 4Bin Tian,IEEE Trans Neural Networks,1999年,10卷,1期,138页
  • 5沈清,神经网络应用技术,1993年
  • 6David L H. An introduction to multi-sensor fusion. Proc.IEEE, 1997, 85(1): 6-23.
  • 7Burr P T, Adeson E H. The laplacian pyramid as acompact image code. IEEE Trans. on Commun. , 1983, 31(4): 532-540.
  • 8Toet A. Multiscale contrast enhancement with application to image fusion. Opt. Engng. , 1992, 31(5): 1026-1031.
  • 9Toet A. Image fusion by a ratio of low-pass pyramid.Pattern Recognition Lett. , 1989. 9(4) : 245-253.
  • 10Li Hui, Manjunath B S, Mitra S K. Multi-sensor image fusion using the wavelet transform. Graphical Models and Image Processing, 1995, 57(5) : 235-245.

共引文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部