期刊文献+

Improving Targeted Multimodal Sentiment Classification with Semantic Description of Images

下载PDF
导出
摘要 Targeted multimodal sentiment classification(TMSC)aims to identify the sentiment polarity of a target mentioned in a multimodal post.The majority of current studies on this task focus on mapping the image and the text to a high-dimensional space in order to obtain and fuse implicit representations,ignoring the rich semantic information contained in the images and not taking into account the contribution of the visual modality in the multimodal fusion representation,which can potentially influence the results of TMSC tasks.This paper proposes a general model for Improving Targeted Multimodal Sentiment Classification with Semantic Description of Images(ITMSC)as a way to tackle these issues and improve the accu-racy of multimodal sentiment analysis.Specifically,the ITMSC model can automatically adjust the contribution of images in the fusion representation through the exploitation of semantic descriptions of images and text similarity relations.Further,we propose a target-based attention module to capture the target-text relevance,an image-based attention module to capture the image-text relevance,and a target-image matching module based on the former two modules to properly align the target with the image so that fine-grained semantic information can be extracted.Our experimental results demonstrate that our model achieves comparable performance with several state-of-the-art approaches on two multimodal sentiment datasets.Our findings indicate that incorporating semantic descriptions of images can enhance our understanding of multimodal content and lead to improved sentiment analysis performance.
出处 《Computers, Materials & Continua》 SCIE EI 2023年第6期5801-5815,共15页 计算机、材料和连续体(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部