期刊文献+

图上非线性波动方程解的爆破

下载PDF
导出
摘要 图作为一种离散结构,可以通过一些有意义的连接来表示离散对象的相互关系,因此,在实际应用中可以将理论模型离散化,是数学、生物学、社会学等领域运用数值模拟解决实际问题的重要工具。图上的偏微分方程可应用于图像分割、动力系统等领域,是人们所关注的热点话题。而图上偏微分方程解的存在性、唯一性和渐近行为等一些性质已经受到众多学者的关注,并得到了大量的研究成果。本文在相关学者研究的基础上用能量方法证明了图上非线性波动方程解的爆破现象,并得出解的爆破时间的上界估计。 As a discrete structure,the graph can represent the interrelationship of discrete objects through some meaningful connections,so the theoretical model can be discretized in practical applications,and it is an important tool for using numerical simulation to solve practical problems in mathematics,biology,sociology and other fields.The partial differential equations on the graph can be applied to image segmentation,dynamical systems and other fields,and are a hot topic of concern.Some properties such as the existence,uniqueness and asymptotic behavior of partial differential equation solutions on graphs have attracted the attention of many scholars and obtained a large number of research results.In this paper,based on the research of relevant scholars,the explosion phenomenon of the solution of the nonlinear wave equation on the graph is proved by energy method,and the upper bound estimate of the burst time of the solution is obtained.
出处 《科技风》 2023年第18期19-21,共3页
基金 新疆理工学院校级科研项目“一类具有间接信号吸收的生物趋化模型解的性质研究”(ZQ202203)。
关键词 图上 非线性 波动方程 爆破 On the graph Nonlinear Wave equation Blow-up
  • 相关文献

参考文献3

二级参考文献21

  • 1顾永耕.抛物型方程的解熄灭(extinction)的充要条件[J].数学学报(中文版),1994,37(1):73-79. 被引量:21
  • 2鲍卫东.Δu-a(x)u+b(x)u^p=0奇解的渐近性质[J].数学的实践与认识,2006,36(6):229-235. 被引量:1
  • 3CHUNG S Y, BERENSTEIN C A. ω- Harmonic function and inverse conductivity problems on networks [ J ]. SIAM J Appl Math,2005,56(4) :1 200- 1 226.
  • 4CHUNG S Y, CHUNG Y S, KIM J H. Diffusion and elastic equations on networks[ J]. Publ Res Inst Math Sci ,2007,43 (3) : 699- 725.
  • 5TRINAJSTIC N,BABIC D,NIKOLI S. The Laplaeian matrix in chemistry[J]. J Chem Inf Comput Sei,1994,34(2) :368- 376.
  • 6ZAKRZEWSKI W J. Laplacians on lattices[ J]. J Nonlinear Math Phys ,2005,12(4) :530- 538.
  • 7ELMOATAZ A, LEZORAY O, BOUGLEUX S. Nonlocal discrete regularization on weighted graphs:a framework for image and manifold processing [ J ]. IEEE Tans Image Process, 2008,17 (7) : 1 047 - 1 060.
  • 8TA V T, LEZORAY O, ELMOATAZ A, et al. Graph -based tools for microscopic cellular image segmentation [ J ]. Pattern Recognition, 2009,42 (6) : 1 113- 1 125.
  • 9CHUNG Y S, LEE Y S, CHUNG S Y. Extinction and positivity of the solutions of the heat equations with absorption on net- works[J]. J Math Anal Appl,2011,380(2) :642- 652.
  • 10WOJCIECHOWSIK R K. Heat kerel and essential spectrum of infinite graphs [ J ]. Indiana University Mathematics Journal, 2009,58(2) :1 419- 1 441.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部