期刊文献+

基于并行LSTM-CNN的化工过程故障检测 被引量:4

Fault Detection of Chemical Process Based on Parallel LSTM-CNN
下载PDF
导出
摘要 为保证生产过程的安全稳定运行,避免因故障导致损失,及时检测出异常工况并对异常工况进行准确诊断十分重要。针对化工过程的复杂性,提出一种并行长短时记忆网络和卷积神经网络(Parallel Long and Short-Term Memory Network and Convolutional Neural Network,PLSTM-CNN)模型进行化工生产过程故障检测。该模型有效结合LSTM对时间序列数据全局特征提取能力和CNN模型善于提取局部特征的能力,减少了特征信息的丢失,实现了较高的故障检测率。采用一维稠密卷积神经网络作为CNN的主体,结合LSTM网络对序列信息变化敏感的特点,在构建更深层网络的同时避免模型过拟合。采用最大互信息(Maximum Mutual Information Coefficient,MMIC)数据预处理方法,提高了数据的局部相关性以及从不同初始条件下PLSTM-CNN模型检测故障的效率。以TE(Tennessee Eastman)过程为研究对象,PLSTM-CNN模型在故障平均检测率和漏报率等指标上明显优于传统循环神经网络。 In order to ensure the safe and stable operation of production processes and avoid losses caused by faults,it is quite important to detect abnormal working conditions in time and diagnose them accurately.Aiming at the complexity of chemical processes,this paper proposes a parallel long and short-term memory network and convolutional neural network(PLSTM-CNN)model for fault detection in chemical production process.By combining the LSTM's ability to extract global features from time series data and the CNN model's ability to extract local features,this model can effectively reduce the loss of feature information and achieve a high fault detection rate.Meanwhile,by using one-dimensional dense convolutional neural network as the main body of CNN and combining the LSTM network's sensitivity to sequence information changes,a deeper network can be built while avoiding model over fitting.Besides,the maximum mutual information coefficient(MMIC)data preprocessing method is adopted to improve the local correlation of the data and improve the efficiency of the PLSTM-CNN model in detecting faults under different initial conditions.Finally,it is shown from the experiment results on Tennessee Eastman(TE)process that the PLSTM-CNN model is obviously superior to the traditional recurrent neural network in such indicators as average failure detection rate and false negative rate.
作者 肖飞扬 顾幸生 XIAO Feiyang;GU Xingsheng(Key Laboratory of Smart Manufacturing in Energy Chemical Process,Ministry of Education,East China University of Science and Technology,Shanghai 200237,China)
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第3期382-390,共9页 Journal of East China University of Science and Technology
基金 国家自然科学基金项目(61973120)。
关键词 故障检测 一维稠密卷积神经网络 长短时记忆网络 互信息 TE过程 fault detection one-dimensional dense convolutional neural network long and short-term memory network mutual information TE process
  • 相关文献

参考文献5

二级参考文献94

  • 1FengDING TongwenCHEN.Modeling and Identification of Multirate Systems[J].自动化学报,2005,31(1):105-122. 被引量:35
  • 2Kano M, Nakagawa Y. Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry[J]. Computers & Chemical Engineering, 2008, 32(1/2): 12- 24.
  • 3Kano M, Nagao K, Hasebe S, et al. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem[J]. Computers & Chemical Engineering, 2002, 26(2): 161- 174.
  • 4Qin S J, Valle S, Piovoso M J. On unifying multiblock analysis with application to decentralized process monitoring[J]. J of Chemometrics, 2001, 15(9): 715-742.
  • 5Qin S J, Cherry G, Good R, et al. Semiconductor manufacturing process control and monitoring: A fab-wide framework[J]. J of Process Control, 2006, 16(3): 179-191.
  • 6Zhang Y, Dudzic M S. Online monitoring of steel casting processes using multivariate statistical technologies: From continuous to transitional operations[J]. J of Process Control, 2006, 16(8): 819-829.
  • 7Undey C, Tatara E, Cinar A. Real-time batch process supervision by integrated knowledge-based systems and multivariate statistical methods[J]. Engineering Applications of Artificial Intelligence, 2003, 16(5/6): 555- 566.
  • 8Desborough L, Harris T. Performance assessment measures for univariate feedback control[J]. J of Chemical Engineering, 1992, 70(6): 262-268.
  • 9Kesavan P, Lee J H. Diagnostic tools for multivariable model-based control systems[J]. Industial Engineering Chemistry Research, 1993, 36(7): 2725-2738.
  • 10Dunia R, Qin S J, Edgar T F, et al. Identification of faulty sensors using principl component analysis[J]. AIChE J, 1996, 42(10): 2797-2812.

共引文献458

同被引文献45

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部