期刊文献+

利用InAs/GaAs数字合金超晶格改进InAs量子点有源区的结构设计

Improving structure design of active region of InAs quantum dots by using InAs/GaAs digital alloy superlattice
下载PDF
导出
摘要 利用分子束外延技术,通过InAs/GaAs数字合金超晶格代替传统的直接生长InGaAs层的方式,在GaAs(100)衬底上生长了InAs量子点结构并成功制备了1.3μm InAs量子点激光器.通过原子力显微镜和光致荧光谱测试手段,对传统生长模式和数字合金超晶格生长模式的两种样品进行了表征,研究发现采用32周期InAs/GaAs数字合金超晶格样品的量子点密度非常高,发光性能良好.通过与常规生长方式所制备激光器的性能对比,发现采用InAs/GaAs数字合金超晶格生长InAs量子点的有源区也可以得到高质量的激光器.利用该方式生长的InAs量子点激光器的阈值电流为24 mA,相应的阈值电流密度仅为75 A/cm^(2),最高工作温度达到120℃.InAs/GaAs数字合金超晶格既可以保证生长过程中源炉的温度保持不变,还可以对InGaAs层的组分实现灵活调控.不需要改变生长速度,通过改变InAs/GaAs数字合金超晶格的周期数以及InAs层和GaAs层的厚度,便可以获得任意组分的InGaAs,从而得到不同发光波长的激光器.这种生长方式对量子点有源区的结构设计和外延生长提供了新思路. A 1.3-μm InAs quantum dot laser has been successfully fabricated on a GaAs(100)substrate by molecular beam epitaxy(MBE)technique through using InAs/GaAs digital alloy superlattices instead of the conventional InGaAs layer.The samples grown by conventional growth method and the digital alloy superlattice growth method are characterized by atomic force microscope(AFM)and photoluminescence(PL)spectroscopy.It is found that 8-period sample possesses a low quantum dot density and poor luminescence performance.With the increase of the number of growth periods,the quantum dot density of the sample increases and the luminous performance improves.This indicates that the quality of the grown sample improves with the increase of InAs/GaAs period of the InGaAs layer.When the total InAs/GaAs period is 32,the quantum dot density of the sample is high and the luminescence performance is good.After the experimental measurement,the sample DAL-0 fabricated by conventional growth method and the sample DAL-32(32-periods InAs/GaAs digital alloy superlattices)are utilized to fabricate quantum dot laser by standard process.The performances of two types of quantum dot lasers obtained with different growth methods are characterized.It is found that the InAs quantum dot lasers fabricated by the sample grown by digital alloy superlattice method have good performances.Under continuous wave operation mode,the threshold current is 24 mA corresponding to a threshold current density of 75 A/cm2.The highest operation-temperature reaches 120℃.In addition,InAs quantum dot laser using digital alloy superlattice has good temperature stability.Its characteristic temperature is 55.4 K.Compared with the traditional laser,the InAs quantum dot laser grown by InAs/GaAs digital alloy superlattice has good performance in terms of threshold current density,output power and temperature stability,which indicates that high-quality laser can be obtained by this growth method.Using the InAs/GaAs digital alloy superlattice growth method,the InGaAs composition can be changed without changing the temperature of the source oven.Thus InAs quantum dot lasers with different luminescence wavelengths can be obtained through this growth method.The InAs/GaAs digital alloy superlattice structure can be used to realize different averaging of In content in the growth structure.The method provides a new idea for designing and growing the active region of quantum dot laser.
作者 杜安天 刘若涛 曹春芳 韩实现 王海龙 龚谦 Du An-Tian;Liu Ruo-Tao;Cao Chun-Fang;Han Shi-Xian;Wang Hai-Long;Gong Qian(Shandong Provincial Key Laboratory of Laser Polarization and Information Technology,School of Physics and Physical Engineering,Qufu Normal University,Qufu 273165,China;Key Laboratory of Terahertz Solid State Technology,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2023年第12期279-285,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61674096)资助的课题。
关键词 量子点 半导体激光器 分子束外延 数字合金超晶格 quantum-dot semiconductor laser molecular beam epitaxy digital alloy superlattices
  • 相关文献

参考文献3

二级参考文献67

  • 1Huffaker D L, Park G, Zou Z, Shehekin O B, Deppe D G 1998 App. Phys, Lett. 73 2564.
  • 2季海铭 曹玉莲 杨涛 马文全 曹青 陈良惠.物理学报,2009,:5818-5818.
  • 3Caroff P, Paranthoen C, Platz C, Dehaese O, Folliot H, Bertru N, Labbe C, Piton R, Homeyer E, Le Corre A, Loualiche S 2005 App. Phys. Lett. 87 243107.
  • 4Huang L R, Yu Y, Tian P, Huang D X 2009 Semicond. Sci. Technol. 24 015009.
  • 5王茺 刘昭麟 李天信 陈平平 崔吴杨 肖军 张曙 杨宇 陆卫.物理学报,2008,:5511-5511.
  • 6Lian G D, Yuan J, Brown L M, Kim G H, itchie D A 1998 App. Phys. Lett. 73 49.
  • 7Liu H Y, Sellers I R, Badcock T J, Mowbray D J, Skolnick M S, Groom K M, Gutierrez M, Hopkinson M, Ng J S, David J P R, Beanland R 2004 App. Phys. Lett. 85 704.
  • 8Kong L M, Feng Z C, Wu Z Y, Lu W J2008 Semcondi. Sci. Tech 23 075044.
  • 9Sears K, Mokkapati S, Buda M, Tan H H, Jagadish C 2006 Proceedings of The SPIE International Symposium on Smart Materials, Nano- and Micro-Smart Systems Adelaide, Australia, 2006, 6415 641506.
  • 10Yang T, Tatebayashl J, Nishioka M, Arakawa Y 2006 App. Phys. Lett. 89 081902.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部