期刊文献+

Cortico–subcortical spatiotemporal dynamics in Parkinson’s disease can be modulated by transcranial alternating current stimulation

原文传递
导出
摘要 Objective:We investigated changes in cortico–subcortical spatiotemporal dynamics to explore the treatment mechanisms oftranscranial alternating current stimulation(tACS)in patientswith Parkinson’s disease(PD).Methods:Resting-state functional magnetic resonance imaging(rs-fMRI)data were collected from 20 patients with PD and 20 normal controls(NC).Each patient with PD received successivemultidisciplinary intensive rehabilitation treatment and tACStreatment over a one-year interval.Individual functional brain network mapping and co-activation pattern(CAP)analysis were performed to characterize cortico–subcortical dynamics.Results:The same tACS electrode placement stimulated different proportions of functional brain networks across the participants.CAP analysis revealed that the visual network,attentional network,and default mode network co-activated with the thalamus,accumbens,and amygdala,respectively.The pattern characterized by thede-activation of the visual network and the activation of the thalamus showed a significantly low amplitude in the patients with PD than inNCs,and this amplitude increased after tACS treatment.Furthermore,the co-occurrence of cortico–subcortical CAPs was significantly higherin patients with PD than in NCs and decreased after tACS treatment.Conclusions:This study investigated cortico–subcortical spatiotemporaldynamics in patients with PD and further revealed the tACS treatmentmechanism.These findings contribute to understanding cortico–subcortical dynamics and exploring noninvasive neuromodulationtargets of cortico–subcortical circuits in brain diseases,such as PD,Alzheimer’s disease,and depression.
出处 《Brain Science Advances》 2023年第2期114-135,共22页 神经科学(英文)
基金 This work was supported by the National Natural Science Foundation of China(Grant Nos.U20A20191,82071912,12104049,82202291) the Fundamental Research Funds for the Central Universities(Grant No.2021CX11011) the National Key Research and Development Program of China(Grant No.2020YFC2007305).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部