摘要
给出树的邻和可区别2-全染色方案,并结合三正则图最小消圈集的独立性以及消圈子图的无圈性,较为简洁地证明三正则图的邻和可区别全色数满足1-2猜想。进一步利用独立消圈集法确定r-正则图、Halin图以及路与路的笛卡尔乘积图的邻和可区别全色数。
The neighbor sum distinguishing 2-total coloring of a tree is presented along with the independence of the minimum decycling set of a 3-regular graph and the acyclicity of the corresponding decycling subgraphs.This method provides a simple way to prove that the neighbor sum distinguishing total chromatic number of a 3-regular graph satisfies the 1-2 Conjecture.The independent decycling set method is used to determine the neighbor sum distinguishing total chromatic number of an r-regular graph,Halin graph,and Cartesian product graph of paths.
作者
常景智
杨超
姚兵
CHANG Jingzhi;YANG Chao;YAO Bing(School of Mathematics,Physics and Statistics,Shanghai University of Engineering Science,Shanghai 201620,China;College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,Gansu,China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2023年第6期35-39,共5页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(62072296)。
关键词
非正常全染色
消圈集
邻和可区别全染色
1-2猜想
non-proper total coloring
decycling set
neighbor sum distinguishing total coloring
1-2 Conjecture