期刊文献+

二五混水平U型设计的Lee偏差下界

Lower bounds of Lee discrepancy for mixed two and five level U-type designs
下载PDF
导出
摘要 研究了二五混水平U型设计在Lee偏差下的均匀性,利用两种不同的新方法,即CHATTERJEE和HU的方法得到了二五混水平U型设计的两个下界,并将它们综合成一个下界,同时以数值实例验证了该综合下界是紧的,且优于以往文献中的下界. The uniformity of mixed two and five level U-type designs in terms of Lee discrepancy is focused on.Two new methods of CHATTERJEE and HU are used to get two new lower bounds of mixed two and five level U-type designs,and a syntheticlower bound is derived.Numerical examples are also provided to verify that the synthetic lower bound is tight and better than the old one inexisting literature.
作者 李伟 汪政红 LI Wei;WANG Zhenghong(College of Mathematics and Statistics,South-Central Minzu University,Wuhan 430074,China)
出处 《中南民族大学学报(自然科学版)》 CAS 北大核心 2023年第4期571-576,共6页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家统计局优选资助项目(2022LY051) 中央高校基本科研业务费专项资金资助项目(CZQ22003)。
关键词 Lee偏差 二五混水平设计 U型设计 下界 Lee discrepancy mixed two and five level designs U-type designs lower bound
  • 相关文献

参考文献2

二级参考文献11

  • 1Chatterjee K, Fang K T, Qin H. Uniformity in factorial designs with mixed levels. J Statist Plann Inference, 2005, 128: 593-607.
  • 2Fang K T, Li R, Sudjianto A. Design and Modelling for Computer Experiments. London: Chapman and Hall, 2005.
  • 3Fang K T, Ma C X, Mukerjee R. Uniformity in fractional factorials. In: Fang K T, Hickernell F J, Niederreiter H, eds. Monte Carlo and Quaai-Monte Carlo Methods in Scientific Compnting. Berlin: Springer-Verlag, 2002, 232-241.
  • 4Fang K T, Wang Y. Number-Theoretic Methods in Statistics. New York: Chapman and Hall, 1994.
  • 5Hickernell F J, Liu M Q. Uniform designs limit aliasing. Biometrika, 2002, 89: 893-904.
  • 6Mukerjee R, Wu C F J. On the existence of saturated and nearly saturated asymmetrical orthogonal arrays. Ann Statist, 1995, 23: 2102-2115.
  • 7Xu H. Minimum moment aberration for nonregular designs and supersaturated designs. Statist Sinica, 2003, 13: 691-708.
  • 8Xu H, Wu C F J. Generalized minimum aberration for asymmetrical fractional factorial designs. Ann Statist, 2001, 29: 549-560.
  • 9Zhon Y D, Ning J H, Song X B. Lee discrepancy and its applications in experimental designs. Statist Probab Lett, 2008, 78: 1933-1942.
  • 10Zou N, Ren P, Qin H. A note on Lee discrepancy. Statist Probab Lett, 2009, 79: 496-500.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部