摘要
采用MIDAS Gen对屋盖提升架与吊点进行模拟,重点探讨考虑荷载组合值下幕墙柱顶提升架、原结构提升架设计及验算是否满足施工规定的要求,包括提升架位移变形、应力比、屈曲稳定性,然后利用ABAQUS对提升上吊点、下吊点进行有限元分析,上吊点为若干提升梁,下吊点为焊接球、连接杆件与下吊具。模拟结果表明:幕墙柱顶提升架最大水平变形为11.57mm、最大竖向位移为7.79mm,杆件最大应力比为0.80,提升架在接近14倍设计荷载作用时整体发生失稳,满足规范要求的位移变形、承载力、设计稳定性,无需再对提升架高度进行变形补偿。原结构提升架最大水平变形为22.21mm、最大竖向位移为23.43mm,杆件最大应力比为0.75,提升架在接近26倍设计荷载作用时整体发生失稳,满足规范要求的位移变形、承载力、设计稳定性,无需再对提升架高度进行变形补偿。上吊点提升梁在1倍设计荷载作用下,提升梁支管最大组合位移为0.624mm,除提升梁Mises应力处少量应力集中区域外,其他均<295MPa,表明提升梁整体处于弹性阶段,满足规范设计荷载作用下的承载力要求。在1倍荷载作用下,最不利下吊点模型最大应力为269MPa,最大应力分布在下吊具位置,而在材质为Q235焊接球上,最大应力<200MPa,因此,模型整体处于弹性阶段;最不利下吊点模型最大组合应变极小,满足相应刚度要求。
MIDAS Gen is used to conduct software simulation on roof lifting frame and lifting point,focusing on discussing whether the design and checking calculation of curtain wall column top lifting frame and original structure lifting frame meet the requirements of construction,including the displacement deformation,stress ratio and buckling stability of lifting frame,and then using ABAQUS to carry out finite element analysis on upper lifting and lower lifting point.The upper lifting point is a number of lifting beams,and the lower lifting point is the welding ball,connecting rod and lower lifting tool.The simulation results show that the maximum horizontal deformation of the curtain wall column top lifting frame is 11.57mm,the maximum vertical displacement is 7.79mm,and the maximum stress ratio of the rod is 0.80.When the lifting frame is close to 14 times of the design load,the overall instability occurs,which meets the displacement deformation,bearing capacity and design stability required by the code.There is no need to compensate the height of the lifting frame.The maximum horizontal deformation of the lifting frame of the original structure is 22.21mm,the maximum vertical displacement is 23.43mm,and the maximum stress ratio of the rod is 0.75.When the lifting frame is close to 26 times of the design load,the overall instability occurs,which meets the displacement deformation,bearing capacity and design stability required by the code.There is no need to make deformation compensation to the height of the lifting frame.Under the one time designed load,the maximum combined displacement of the side pipe of the lifting beam was 0.624mm,and the Mises stress was less than 295MPa except for a small amount of stress concentration in the Mises stress,indicating that the lifting beam was in the elastic stage as a whole and could meet the bearing capacity requirements under the standard designed load.Under the action of one time load,the maximum stress of the lifting point model is 269MPa,and the maximum stress is distributed at the position of the lower lifting tool.However,on the welded ball made of Q235,the maximum stress does not exceed 200MPa,so the whole model is in the elastic stage.The maximum combined strain of the most unfavorable hanging point model is minimal,which meets the corresponding stiffness requirements.
作者
柏海
李红现
曹海良
刘殿忠
马振和
周金良
李占良
BAI Hai;LI Hongxian;CAO Hailiang;LIU Dianzhong;MA Zhenhe;ZHOU Jinliang;LI Zhanliang(Northwest Branch of China Construction Eighth Engineering Bureau Co.,Ltd.,Xi’an,Shaanxi 710076,China;College of Civil Engineering,Jilin Jianzhu University,Changchun,Jilin 130118,China)
出处
《施工技术(中英文)》
CAS
2023年第8期10-15,共6页
Construction Technology
基金
国家自然科学基金(51378238)。
关键词
航站楼
钢结构
屋盖
位移
应力比
稳定性
承载力
刚度
terminals
steel structures
roofs
displacement
stress ratio
stability
bearing capacity
stiffness