期刊文献+

Numerical analysis of aluminum alloy reticulated shells with gusset joints under fire conditions

原文传递
导出
摘要 In this study,a numerical analysis was conducted on aluminum alloy reticulated shells(AARSs)with gusset joints under fire conditions.First,a thermal-structural coupled analysis model of AARSs considering joint semirigidity was proposed and validated against room-temperature and fire tests.The proposed model can also be adopted to analyze the fire response of other reticulated structures with semi-rigid joints.Second,a parametric analysis was conducted based on the numerical model to explore the buckling behavior of K6 AARS with gusset joints under fire conditions.The results indicated that the span,height-to-span ratio,height of the supporting structure,and fire power influence the reduction factor of the buckling capacity of AARSs under fire conditions.In contrast,the reduction factor is independent of the number of element divisions,number of rings,span-to-thickness ratio,and support condition.Subsequently,practical design formulae for predicting the reduction factor of the buckling capacity of K6 AARSs were derived based on numerical analysis results and machine learning techniques to provide a rapid evaluation method.Finally,further numerical analyses were conducted to propose practical design suggestions,including the conditions of ignoring the ultimate bearing capacity analysis of K6 AARS and ignoring the radiative heat flux.
出处 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第3期448-466,共19页 结构与土木工程前沿(英文版)
基金 The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China(Grant No.51478335).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部