摘要
介绍了一种用于原子气室的无磁加热薄膜技术。原子磁力仪、原子陀螺仪、原子钟等采用热原子系综的精密测量仪器通常采用原子气室作为物理系统,为了保证足够的原子数密度,原子气室工作温度通常为80~120℃,因此无磁加热技术是热原子钟的核心技术之一。采用多物理场有限元仿真分析通电线圈在小电流(直流0.2A)条件下产生的稳态磁场分布情况,通过对比不同线圈结构产生的磁场分布,得到满足性能要求的通电线圈结构。实验结果表明,采用优化后结构的无磁加热薄膜产生的剩磁低于100nT,满足原子气室无磁加热要求。该设计对以原子气室的原子钟性能提升提供了可靠保证,并为原子钟小型化提供参考。
A non-magnetic heating film technology for atomic cells is introduced.To ensure sufficient atomic number density,the working temperature of atomic cells is usually between 80~120°C,making non-magnetic heating technology one of the core technologies of thermal atomic clocks.The multi-physics finite element simulation analysis is used to analyze the steady-state magnetic field distribution generated by the energized coil under small current conditions(0.2 A DC).By comparing the magnetic field distribution generated by different coil structures,the coil structure that meets the performance requirements is obtained.The experimental results show that the non-magnetic heating film with the optimized structure generates a residual magnetic field of less than 100 nT,meeting the requirements of non-magnetic heating for atomic cells.The design in this article provides a reference for the optimization and improvement of the atomic cell design and operating parameters of thermal atomic clocks based on atomic vapor,providing a reliable guarantee for the miniaturization and performance improvement of thermal atomic clocks.
作者
李德文
孙震
李军强
LI De-wen;SUN Zhen;LI Jun-qiang(Huazhong Institute of Electro-Optics-Wuhan National Laboratory for Optoelectronics,Wuhan 430223,China)
出处
《光学与光电技术》
2023年第3期87-91,共5页
Optics & Optoelectronic Technology
关键词
无磁加热
原子气室
加热线圈
磁场噪声
原子钟
有限元分析
non-magnetic heating
atomic chamber
heating coil
magnetic noise
atomic clock
finite element analysis