期刊文献+

跨层多尺度特征融合的边缘检测模型

Cross-layer Multi-scale Feature Fusion Model for Edge Detection
下载PDF
导出
摘要 充分利用多尺度信息对于提高不同尺度对象的边缘检测十分重要,因此提出一种跨层多尺度特征融合的边缘检测模型。使用残差网络作为模型的主干网络,为了增大模型的感受野,在最后一个阶段使用扩张卷积,同时在每个Bottleneck模块中添加了全局注意力模块。此外,使用多尺度融合模块对特征图提取更准确的边缘,使用跨层融合模块将高层特征和低层特征进行融合。在BIPED数据集,BSDS500数据集和NYUDv2数据集上进行评估,并在BIPED数据集上实现了0.866的ODS-F值和0.871的OIS-F值,比在BIPED数据集上的最新技术分别提高了0.7%和0.4%。 Making full use of multi-scale information is very important to improve the edge detection of objects at different scales,so a cross-layer multi-scale feature fusion model for edge detection is proposed.The residual network is used as the back⁃bone network,in order to increase the receptive field of the model,dilated convolution is used in the last stage,and a global atten⁃tion module is added to each Bottleneck module.In addition,a multi-scale fusion module is used to extract more accurate edges of the feature map,and a cross-layer fusion module is used to fuse high-level features and low-level features.The method is evaluated on the BIPED dataset,BSDS500 dataset and NYUDv2 dataset,and it achieves ODS F-measure of 0.866 and OIS F-measure of 0.871,0.7%and 0.4%higher than current state-of-the-art on BIPED respectively.
作者 杨祖源 刘华军 YANG Zuyuan;LIU Huajun(School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094)
出处 《计算机与数字工程》 2023年第3期623-628,668,共7页 Computer & Digital Engineering
关键词 边缘检测 注意力机制 多尺度融合 扩张卷积 edge detection attention mechanism multi-scale fusion dilated convolution
  • 相关文献

参考文献2

二级参考文献18

  • 1REN X, BO L. Discriminatively trained sparse code gradients for contour detection [ C]// NIPS 2012: Proceedings of the 2012 Ad- vances in Neural Information Processing Systems 25. Cambridge, MA: MIT Press, 2012:593-601.
  • 2KOHLI P, LADICK~r L, TORR P H. Robust higher order potentials for enforcing label consistency [ J]. International Journal of Comput- er Vision, 2009, 82(3): 302-324.
  • 3PANTOFARU C, SCHMID C, HEBERT M. Object recognition by integrating multiple image segmentations [ C]// ECCV 2008: Pro- ceedings of the 10th European Conference on Computer Vision, LNCS 5304. Berlin: Springer-Verlag, 2008:481-494.
  • 4ROBERT L G. Machine perception of three-dimensional solids [ J]. Optical and Electro-Optical Information Processing, 1965, 21 (7) : 159 - 197.
  • 5TORRE V, POGGIO T A. On edge detection [ J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1986, 8 (2) :147 -163.
  • 6ARBELAEZ P, HARIHARAN B, GU C, et al. Semantic segmenta- tion using regions and parts [ C]//CVPR 2012: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recogni- tion. Washington, DC: IEEE Computer Society, 2012: 3378- 3385.
  • 7ARBELAEZ P, MAIRE M, FOWLKES C, et al. Contour detec- tion and hierarchical image segmentation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898 -916.
  • 8DOLLAR P, ZITNICK C L. Structured forests for fast edge detec- tion [ C]//ICCV '13: Proceedings of the 2013 IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2013:1841 - 1848.
  • 9LIM J J, ZITNICK C L, DOLLAR P. Sketch tokens: a learned mid-level representation for contour and object detection [ C]// CVPR 2013: Preceedings of the 2013 IEEE Conference on Com- puter Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2013:3158 -3165.
  • 10ISOLA P, ZORAN D, KRISHNAN D, et al. Crisp boundary de- tection using pointwise mutual information [ C]// ECCV 2014: Proceedings of the 13th European Conference on Computer Vision, LNCS 8691. Berlin: Springex-Verlag, 2014:799 -814.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部