期刊文献+

基于卷积神经网络的非合作目标两阶段位姿估计方法

A Two-Stage Pose Estimation Method for Noncooperative Targets Based on Convolution Neural Network
下载PDF
导出
摘要 针对空间非合作目标在轨服务中的位姿估计问题,提出了一种基于卷积神经网络的两阶段相对位姿视觉估计算法.该算法在阶段1中结合位置回归和检测模块,将检测后的图像输入阶段2中,并对任务过程中的绕飞和接近两种情况分别设计姿态估计模型,绕飞时采用分类代替回归的间接方法,接近时采用直接回归方法估计姿态,实现了对非合作目标在轨服务过程的位姿估计.充足的消融实验验证了各阶段模型的有效性,仿真实验位置精度可达0.1836 m,姿态精度可达2.9489°,表明了基于卷积神经网络的单目视觉方法应用于非合作目标在轨服务中位姿估计的可行性. A two-stage relative pose estimation algorithm based on convolutional neural network was proposed to solve the problem of pose estimation for space noncooperative targets in orbit service.The detection module was combined with translation regression module in the first stage,and the detected image was input into stage two.An attitude estimation model was designed for flight around and flight approach during the mission.The indirect method of classification instead of regression was used in flying around,and the direct regression method was adopted to estimate the attitude when approaching,so as to realize pose estimation of noncooperative targets in orbit service process.A large-scale dataset is introduced,which can be utilized as a benchmark for pose estimation methods.Abundant ablation studies verified the effectiveness of each module.The position accuracy could reach 0.1836 meters and attitude accuracy could reach 2.9489 degrees,which shows the feasibility of monocular vision method based on convolutional neural network to estimate the pose of noncooperative targets in orbit service.
作者 苏迪 张成 王柯 孙凯 SU Di;ZHANG Cheng;WANG Ke;SUN Kai(Key Laboratory of Dynamics and Control of Flight Vehicle,Ministry of Education,School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China)
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2023年第7期734-743,共10页 Transactions of Beijing Institute of Technology
关键词 卷积神经网络 非合作目标 位姿估计 单目视觉 目标检测 convolutional neural network noncooperative target pose estimation monocular vision object detection
  • 相关文献

参考文献7

二级参考文献38

  • 1张志勇,张靖,朱大勇.一种基于视觉成像的快速收敛的位姿测量算法及实验研究[J].航空学报,2007,28(4):943-947. 被引量:24
  • 2Kelsey J M,Byrne J, Cosgrove M, et al. Vision-based relative pose estimation for autonomous rendezvous and docking [ C ]// 2006 IEEE Aerospace Conference. Piscataway, NJ: IEEE ,2006: 1 - 20.
  • 3Abderrahim M,Diaz J C ,Rossi C, et al. Experimental simulation of satellite relative navigation using computer vision [ C ]//Pro- ceedings of 2nd International Conference on Recent Advances in Space Technologies. Piscataway, NJ : IEEE,2005:379 - 384.
  • 4Arantes G,Rocco E M,da Fonseca I M, et al. Far and proximity maneuvers of a constellation of service satellites and autonomous pose estimation of customer satellite using machine vision [ J].Acta Astronautica,2010,66 (9/10) : 1493 - 1505.
  • 5Zhang G L,Liu H,Wang J,et al. Vision-based system for satel- lite on-orbit self-servicing [ C ]//Proceedings of the 2008 IEEE/ ASME International Conference on Advanced Intelligent Mecha- tronics. Piscataway, NJ : IEEE ,2005:296 - 301.
  • 6Petit A,Marehand E, Kanani K. Vision-based space autonomous rendezvous: a case study [ C ]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, N J: IEEE ,2011:619 - 624.
  • 7Du X D,Liang B,Tao Y B. Pose determination of large non-coop- erative satellite in close range using coordinated cameras [ C]// Proceedings of the 2009 IEEE International Conference on Mecha- tronics and Automation. Piscataway, NJ : IEEE ,2009:3910 - 3915.
  • 8Bishop C M. Pattern recognition and machine learning [ M ]. New York : Springer, 2006 : 137.
  • 9Kimeldorf G,Wahba G. Some resuhs on Tchebycheffian spline functions [ J]. Journal of Mathematical Analysis and Applica- tions,1971,33( 1 ) :82 - 95.
  • 10Richard C, Bermudez J C M, Honeine P. Online prediction of time series data with kernels [ J ]. IEEE Transactions on Signal Processing ,2009,57 ( 3 ) : 1058 - 1067.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部