期刊文献+

基于自适应负载灰狼优化算法的多机器人通信研究

Multi-robot communication based on adaptive loaded grey wolf optimizer
下载PDF
导出
摘要 针对多机器人系统在特殊任务背景下任务层并发大数据流量的远距离实时转发问题,提出自适应负载灰狼优化(ALGWO)算法。该文方法利用应用层感知任务及转发信息内容的属性,建立基于任务重要性、实时性和网络时延等综合因素的数据转发机制。结合ALGWO算法,通过改变路由发现过程中的路径耗费和全局路径寻优,实现实时数据的高效转发。相比于动态源路由(DSR)协议,该文方法可以找到所有的可达路径,并根据机器人的自身状态和任务感知选择当前状态下负载最小的路径。在寻路时采用源驱动方式,减小了网络的开销。采用泛洪的寻路方式,尝试所有可能的路径,所以该协议机制也是高稳健的。实验结果表明,该文方法具有较好的实时性和可移植性,具有实际应用价值。 Aiming at the remote real-time forwarding problem of large concurrent data traffic at task level in multi-robot system under special task background,an adaptive load gray wolf optimization(ALGWO)algorithm is proposed.A data forwarding mechanism is proposed based on task importance,real-time and network delay by using the attributes of application layer sensing tasks and forwarding information content.Combined with ALGWO algorithm,efficient forwarding of real-time data is realized by changing the path cost and global path optimization in the process of route discovery.Compared with dynamic source routing(DSR)protocol,this method can find all the reachable paths,and select the path with the least load according to the robot’s own state and task awareness.The source driven method is used to reduce the network overhead.The protocol mechanism is also highly robust because it uses flooding routing to try all possible paths.The experimental results show that this method has good real-time performance and portability,and has practical application value.
作者 祁燕 蔡云飞 宋勇磊 Qi Yan;Cai Yunfei;Song Yonglei(School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)
出处 《南京理工大学学报》 CAS CSCD 北大核心 2023年第3期295-303,共9页 Journal of Nanjing University of Science and Technology
基金 军科委基础加强项目(2019-JCJQ-JJ-355)。
关键词 灰狼优化 多机器人 通信 应用层路由 全局路径寻优 动态路由协议 源驱动 泛洪寻路 grey wolf optimization multi-robot communication application layer routing global path optimization dynamic routing protocol source driven flooding routing
  • 相关文献

参考文献3

二级参考文献31

  • 1[3]Rao V V B.Most-vital edge of a graph with respect to spanning trees[J].IEEE Trans Reliability,1998,47(1):6-7.
  • 2[4]Tsen F P,Sung T Y,Lin M Y,et al.Finding the most vital edges with respect to the number of spanning trees[J].IEEE Trans Reliability,1994,43(4):600-602.
  • 3[5]Page L B,Perry J E.Reliability polynomials and link importance in networks[J].IEEE Trans Reliability,1994,43(1):51 -58.
  • 4[6]Nardelli E,Proietti G,Widmayer P.Finding the detour-critical edge of a shortest path between two nodes[J].Information Processing Letters,1998,67(1):51 -54.
  • 5[7]Nardelli E,Proietti G,Widmayer P.A faster computation of the most vital edge of a shortest path[J].Information Processing Letters,2001,79(2):81 -85.
  • 6[8]Traldi L.Reliability polynomials and link importance in networks[J].IEEE Trans Reliability,2000,49(3):322.
  • 7[9]Hsu L H,Jan R H,Lee Y C,et al.Finding the most vital edge with respect to minimum spanning tree in weighted graphs[J].Information Processing Letters,1991,39(5):277-281.
  • 8[12]Aggarwal K K.Integration of reliability and capacity in performance of a telecommunication network[J].IEEE Trans Reliability,1985,34(1):184-186.
  • 9[13]Trstensky D,Bowron P.An alternative index for the reliability of telecommunication networks[J].IEEE Trans Reliability,1984,33 (10):343-345.
  • 10熊庆旭,刘有恒.基于网络状态之间关系的网络的可靠性分析[J].通信学报,1998,19(3):55-61. 被引量:12

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部