期刊文献+

深度学习的车道线检测方法 被引量:2

Lane Line Detection Method Based on Deep Learning
下载PDF
导出
摘要 随着人工智能技术的不断发展,无人驾驶技术已经成为当下社会发展的热门,车道线检测是无人驾驶技术的关键一环,但传统的基于视觉的车道线检测方法处理时间较长、过程繁琐、需要人为干预。基于深度学习的车道线检测可大大减少此类问题。文章设计了一个完成双任务的Enet网络,分别解决目标区域分割问题和不同车道区分问题,以实现端到端的检测。与主流车道线检测网络模型deeplab v3和YOLO v3进行对比。实验验证表明,网络模型的最终训练准确率为99.8%,相对于deeplab v3和YOLO v3网络分别提升1.2%和0.8%。 With the continuous development of artificial intelligence technology,driverless technology has become a hot topic in the current social development.Lane line detection is a key link of driverless technology,but the traditional vision-based lane line detection method takes a long time to process,and the process is tedious,requiring human intervention.The lane line detection based on deep learning can greatly reduce such problems.In this paper,an Enet network is designed to complete dual tasks,which solves the problem of target area segmentation and different lane differentiation respectively to achieve end-to-end detection.Compared with mainstream lane line detection network models deeplab v3 and YOLO v3,the experimental verification shows that the final training accuracy of the network model used in this experiment is 99.8%,which is 1.2%and 0.8%higher than deeplab v3 and YOLO v3,respectively.
作者 张林 ZHANG Lin(School of Intelligent Manufacturing Engineering,Xi'an Automotive Vocational University,Xi'an 710600,China)
出处 《汽车实用技术》 2023年第12期48-52,共5页 Automobile Applied Technology
关键词 车道线检测 深度学习 端到端 实例分割 Lane line detection Deep learning End-to-end Instance segmentation
  • 相关文献

参考文献3

二级参考文献18

  • 1SAHA S K, DULAL C M, BHUIYAN A A. Neural network based sign recognition [J]. International Journal of Computer Application, 2012, 50(10) : 35-41.
  • 2STALLKAMP J, SCHLIOSING M, SALMENA J, et al. Man vs. computer: benchmarking machine learning algorithms for traf- fic sign recognition [J]. Neural Network, 2012, 32(2): 323-332.
  • 3中国计算机学会.深度学习:推进人工智能梦想[EB/OL].[2013-06-10].http://www.ccg.org.cn.
  • 4FUKUSHIMA K. Neocognition: a self-organizing neural net- work model for a mechanism of pattern recognition unaffected by shift in position [J]. Biological Cybernetics, 1950, 36(4):193-202.
  • 5LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. IEEE Journal and Magazines, 1989, 86(11) : 2278-2324.
  • 6LECUN Y, BOTTOU L, BENGIO Y, et al. Baekpropagation applied to handwritten zip code recognition [J]. Neural Compu- tation, 1989, 1(4) : 541-551.
  • 7CIRESAN D, MEIER U, MASCI J, et al. Multi-column deep neural network for traffic sign classification [J]. Neural Net- works, 2012, 32(2): 333-338.
  • 8NAGI J, DUCATELLE F, CARO D, et al. Max-pooling con- volution neural network for vision-based hand gesture recogni- tion [C]// 2011 IEEE International Conference on Signal and Image Processing Application. Kaala Lumpur: IEEE, 2011, 342-347.
  • 9BUVRIE J. Notes on convolutional neural networks [EB/OL]. [2006-11-12]. http ://cogprints.org/5869/.
  • 10周开利,康耀红.神经网络模型及其Matlab仿真设计[M].北京:清华大学出版社,2005.

共引文献31

同被引文献30

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部