期刊文献+

柔性脚踝康复机器人自适应迭代学习控制 被引量:2

Adaptive iterative learning control of flexible ankle rehabilitation robot
原文传递
导出
摘要 为解决气动肌肉驱动的脚踝康复机器人实际控制中,无模型自适应迭代学习控制在系统噪声干扰下或初始拟伪偏导选择不当会导致算法收敛速度过慢、控制效果差的问题,提出一种基于高阶拟伪偏导整定的无模型迭代学习控制方法,并设计基于零化神经网络误差递归的迭代学习控制律.通过引入系统观测数据对初始拟伪偏导进行修正,减少拟伪偏导初始值的选取对于算法收敛速度的影响;通过设计抗噪声零化神经网络控制律,减小系统噪声对控制性能的影响,进而实现噪声环境下柔性康复机器人的高性能轨迹跟踪.仿真实验结果表明在噪声环境下能够利用较少的迭代轮次降低最大跟踪误差.机器人实际控制实验结果表明:该方法能够在7次迭代后使气动肌肉平均跟踪误差控制在2%以内,并且在不同初始拟伪偏导条件下均能获得较好的收敛性和轨迹跟踪性能. To solve the problem that model-free adaptive iterative learning control(MFAILC)in the practical control of ankle rehabilitation robot driven by pneumatic muscles could lead to slow convergence and poor control performance under system noise interference or improper selection of the initial pseudo-partial derivative(PPD),a model-free iterative learning control method based on high-order PPD tuning was proposed,and the control law of MFAILC based on the zeroing neural network(ZNN)error recursion was designed.The system observation data was introduced to modify the initial PPD and to reduce the influence of the selection of initial PPD on the convergence speed.The noise tolerant ZNN control law was designed to reduce the influence of system noise on control performance,enabling the high-performance trajectory tracking of flexible rehabilitation robot in noise environment.Simulation results show that the maximum tracking error can be reduced by fewer iterations in noise environments.The actual control results of robot show that the average tracking error of pneumatic muscle can be reduced within 2%after 7 iterations,and the superior convergence and trajectory tracking performance can be achieved under different initial PPDs.
作者 刘泉 谢先亮 孟伟 艾青松 LIU Quan;XIE Xianliang;MENG Wei;AI Qingsong(School of Information Engineering,Wuhan University of Technology,Wuhan 430070,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第5期53-59,共7页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金面上项目(52275029,52075398).
关键词 迭代学习控制 拟伪偏导 零化神经网络 动态线性化 柔性康复机器人 iterative learning control pseudo-partial derivative zeroing neural network dynamic linearization flexible rehabilitation robot
  • 相关文献

参考文献2

二级参考文献18

  • 1GAMS A, LENARCIC J. Humanoid arm kinematic modeling and trajectory generation[C]// 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, February 20-22, 2006, Pisa, Italy. New York: Institute of Electrical and Electronics Engineers Computer Society, 2006: 301-305.
  • 2ALMASRI B, OUEZDOU F B. Human-like motion based on a geometrical inverse kinematics and energetic optimization[C]// 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, September22-26, 2008, Nice, France. New York: Inst. of Elec. and Elec. Eng. Computer Society, 2008: 640-646.
  • 3ZACHARIAS F, SCHLETTE C, SCHMIDT F, et al. Making planned paths look more human-like in humanoid robot manipulation planning[C]//2011 1EEE International Conference on Robotics and Automation, ICRA 2011, May 9-13, 2011, Shanghai, China. New York: Institute of Electrical and Electronics Engineers Inc., 2011: 1192-1198.
  • 4KIM H, LI Z, MILUTINOVIC D, et al. Resolving the redundancy of a seven DOF wearable robotic system based on kinematic and dynamic constraint[C]// 2012 IEEE International Conference on Robotics and Automation, ICRA2012, May 14-18, 2012, 445HoesLane / P.O. Box 1331, Piscataway, NJ 08855-1331, United States. New York: Institute of Electrical and Electronics Engineers Inc., 2012: 305-310.
  • 5JUNG E S, CHOE J, KIM S H. Psychophysical cost function of joint movement for arm reach posture prediction[C]//Proceedings of the 38th Annual Meeting of the Human Factors and Ergonomics Society, October 24-28, 1994, Nashville, TN, USA. New York.. Human Factors and Ergonomics Society, Inc., 1994: 636-640.
  • 6LEE P, WEI S, ZHAO J, et al. Strength guided motion[J]. Computer Graphics (ACM), 1990, 24(4): 253-262.
  • 7YANG J, MARLER R T, KIM H, et al. Multi-objective optimization for upper body posture prediction[C]// Collection of Technical Papers - 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, August 30-September 1, 2004, Albany, NY, United States. Reston: American Institute of Aeronautics and Astronautics Inc., 2004: 2288-2305.
  • 8YANG J , MARLER T , RAHMATALLA S. Multi-objective optimization-based method for kinematic posture prediction: Development and validation[J]. Robotica, 2011, 29(2): 245-253.
  • 9ABDEL-MALEK K, MI Z, YANG J, et al. Optimization-based trajectory planning of the human upper body[J]. Robotica, 2006, 24(6): 683-696.
  • 10ZHANG X D, CHAFFIN D. A three-dimensional dynamic posture prediction model for simulating in-vehicle seated reaching movements: Development and validation[J].Ergonomics, 2000, 43(9): 1314-1330.

共引文献7

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部