期刊文献+

Preparation and Properties of Superhydrophobic ZnO Nanorod-based Nanocomposite on the Surface of Stainless Steel Mesh

原文传递
导出
摘要 Bionic superhydrophobic coating has extremely broad application prospects and practical value. It is based on two important conditions, one is the construction of micro–nano structure, the other is the material with low surface energy. How to stabilize the micro–nano structure has become the focus of researches. In this work, a layer of Zn film is deposited on the stainless steel mesh with sturdy micron structure by RF magnetron sputtering. The solid micron structure of the stainless steel mesh itself, combined with the method of thermal oxidation, the surface of the stainless steel mesh is thus formed into a nanorod like ZnO nano structure, and then modified with perfluorodecyltriethoxysilane (PFDS) for low surface energy. The maximum contact angle of the superhydrophobic sample is 154.8°, and the minimum sliding angle is 2°, and it also has excellent corrosion resistance, thermal stability, self-cleaning, anti-aging and anti-icing properties, which provides a design idea for the preparation of superhydrophobic coatings.
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期910-922,共13页 仿生工程学报(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Number 52172090 and 52071159).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部