期刊文献+

基于自然崩落法的铜矿峪矿二期工程410中段底部结构优化

Optimization of Bottom Structure of Tongkuangyu Mine Phase II Project 410 Middle Section Based on Natural Caving Method
下载PDF
导出
摘要 针对铜矿峪矿二期工程530中段在开采过程中底部结构出现的不同程度地压破坏给正常生产造成严重影响的情况,通过对530中段底部结构的布置形式、支护方式等方面进行综合分析,认为现有底部结构布置形式及支护方式等方面还有改进空间,以满足应力集中所需的强度、防止地压破坏。因此,在410中段设计与施工期间,对采场底部结构进行优化,将底部结构高度相较530中段整体抬高3 m,同时根据每个聚矿沟的担负矿量,采用钢拱架、钢筋混凝土等联合支护形式对装矿进路(眉线梁)进行加固支护,采用锚喷网与锚索联合支护形式对出矿穿脉与装矿进路进行支护。经实践,410中段自2021年投产至今,未出现地压破坏区域。 In view of the situation that the bottom structure of the 530 middle section of the second phase project of Tongkuangyu Mine has been damaged by ground pressure to varying degrees during the mining process,which has seriously affected the normal production,through a comprehensive analysis of the layout form and support mode of the bottom structure of the 530 middle section,it is believed that there is still room for improvement in the existing bottom structure layout form and support mode,so as to meet the strength required for stress concentration and prevent ground pressure damage.Therefore,during the design and construction of the middle section 410,the bottom structure of the stope was optimized.The height of the bottom structure was raised by 3 meters as a whole compared with the middle section 530.At the same time,according to the ore bearing capacity of each ore gathering ditch,the ore loading access road(eyebrow line beam)was reinforced and supported with steel arch,reinforced concrete and other combined support forms,and the ore drawing and ore loading access road were supported with the combined support form of anchor shotcrete mesh and anchor cable.Through practice,since the middle section 410 was put into production in 2021,there has been no ground pressure damage area.
作者 张杰 Zhang Jie(Tongkuangyu Mine,Shanxi North Copper Co.,Ltd.,Yuanqu Shanxi 043700)
出处 《山西冶金》 CAS 2023年第5期152-153,265,共3页 Shanxi Metallurgy
关键词 铜矿峪矿 地压破坏 底部结构 Tongkuangyu Mine ground pressure damage bottom structure
  • 相关文献

参考文献2

二级参考文献15

  • 1唐春安,傅宇方,赵文.震源孕育模式的数值模拟研究[J].地震学报,1997,19(4):337-346. 被引量:21
  • 2Block L V,Cheng C H, Fehler M C,et al. Seismic imaging using microearthquakes induced by hydraulic fracturing[J]. Geophysics,1994,59(1) :102--112.
  • 3Rutledge J T,Phillips W S,House L S,et al. Microseismic mapping of a Cotton Valley hydraulic fracture using decimated downhole arrays, Expanded Abstracts [M]. New Orleans (Louisiana) : Ann Internat Mtg Soc Explor Geophys, 1998. 338-- 341.
  • 4Trifu C I,Urbancic T I,Young R P. Source parameters of mining-induced seismic events : An evaluation of homogeneous and inhomogeneous faulting models for assessing damage potential[J]. Pure and Applied Geophysics, 1995,145(1) : 3-- 27.
  • 5Hazzard J F,Young R P. Simulating acoustic emissions in bonded particle models of rock[J] . International Journal of Rock Mechanics, 2000,37: 867-- 872.
  • 6Lei X L, Kusunose K, Nishizawa O,et al. On the spatio-temporal distribution of acoustic emissions in two granitic rocks under triaxial compression: The role of pre-existing cracks. [J]. Geophsical Research Letters, 2000,27(13) : 1997-- 2000.
  • 7Lei X L,Kusunose K, Rao M V,et al. Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring[J] . J Geophys Res,2000,105: 6127--6139.
  • 8Marsan D, Bean C J,Steacy S,et al. Spatio-temporal analysis of stress diffusion in a mining-induced seismicity system[J]. Geophysical Research Letters, 1999,26(24) : 3697-- 3700.
  • 9Wang Z J. Fundamentals of seismic rock physics [J]. Geophysics, 2001, 66(2) : 398-- 412.
  • 10唐春安,赵文.岩石破裂全过程分析软件系统RFPA^(2D)[J].岩石力学与工程学报,1997,16(5):507-508. 被引量:182

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部