期刊文献+

Neuro-Based Higher Order Sliding Mode Control for Perturbed Nonlinear Systems

下载PDF
导出
摘要 One of the great concerns when tackling nonlinear systems is how to design a robust controller that is able to deal with uncertainty.Many researchers have been working on developing such type of controllers.One of the most effi-cient techniques employed to develop such controllers is sliding mode control(SMC).However,the low order SMC suffers from chattering problem which harm the actuators of the control system and thus unsuitable to be used in many practical applications.In this paper,the drawbacks of low order traditional sliding mode control(FOTSMC)are resolved by presenting a novel adaptive radial basis function neural network–based generalized rth order sliding mode control strategy for nth order uncertain nonlinear systems.The proposed solution adopts neural networks for their excellent capability in function approximation and thus used to approximate the nonlinearities and uncertainties for systems under considera-tion.The approximation errors are completely considered in the developed approach.The proposed approach can be used with any order of sliding mode and thus can be generally used with various types of applications.The global sta-bility of the proposed control approach is proved through Lyapunov stability cri-terion.The proposed approach is validated and assessed through simulations on the nonlinear inverted pendulum system with severe modeling uncertainties.The simulations results show that the proposed approach provide superior perfor-mance compared with other approaches in the literature.
出处 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期385-400,共16页 智能自动化与软计算(英文)
基金 funded by the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia through the project number(IF-PSAU-2021/01/17796).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部