期刊文献+

Retinal microvasculature is a potential biomarker for acute mountain sickness

原文传递
导出
摘要 Increased cerebral blood flow resulting from altered capillary level autoregulation at high altitudes leads to capillary overperfusion and then vasogenic cerebral edema,which is the leading hypothesis of acute mountain sickness(AMS).However,studies on cerebral blood flow in AMS have been mostly restricted to gross cerebrovascular endpoints as opposed to the microvasculature.This study aimed to investigate ocular microcirculation alterations,the only visualized capillaries in the central neural system(CNS),during early-stage AMS using a hypobaric chamber.This study found that after high altitude simulation,the optic nerve showed retinal nerve fiber layer thickening(P=0.004–0.018)in some locations,and the area of the optic nerve subarachnoid space(P=0.004)enlarged.Optical coherence tomography angiography(OCTA)showed increased retinal radial peripapillary capillary(RPC)flow density(P=0.003–0.046),particularly on the nasal side of the nerve.The AMSpositive group had the largest increases in RPC flow density in the nasal sector(AMS-positive,?3.21±2.37;AMS-negative,?0.01±2.16,P=0.004).Among multiple ocular changes,OCTA increase in RPC flow density was associated with simulated early-stage AMS symptoms(beta=0.222,95%CI,0.009–0.435,P=0.042).The area under the receiver operating characteristics curve(AUC)for the changes in RPC flow density to predict early-stage AMS outcomes was 0.882(95%CI,0.746–0.998).The results further confirmed that overperfusion of microvascular beds is the key pathophysiologic change in early-stage AMS.RPC OCTA endpoints may serve as a rapid,noninvasive potential biomarker for CNS microvascular changes and AMS development during risk assessment of individuals at high altitudes.
出处 《Science China(Life Sciences)》 SCIE CAS CSCD 2023年第6期1290-1302,共13页 中国科学(生命科学英文版)
基金 supported by the National Natural Science Foundation of China (81271005 and 81300767) Beijing Natural Science Foundation (7122038) Capital Health Research and Development of Special Foundation (ZYLX201501)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部