期刊文献+

基于动态惯性因子的五轴混联机床跟随误差实时溯因模型

Real-time abductive model of following error of five-axis hybrid machine tool based on dynamic inertia factor
下载PDF
导出
摘要 为提高零件的加工效率及加工精度,准确分析五轴混联机床的轨迹误差,提出了基于动态惯性因子的五轴混联机床跟随误差实时溯因模型。建立五轴混联机床运动学模型,对位置进行逆解处理,运用机械传动装置的动力学微分方程,采用时间序列分析方法对机床演化特征进行分析,查找机床工作时的误差项,通过动态惯性因子优化SVM算法收敛能力,实现五轴混联机床跟随误差实时溯因。以某型号五轴混联机床为例,对时序信号进行去噪处理,分别分析了反向跃冲误差、直线度误差情况,实验结果表明所提模型的收敛性能较好,能跟踪到误差对象,噪声平滑效果较好,可跟踪到各个方向的误差。 In order to improve the machining efficiency and accuracy of parts,and accurately analyze the trajectory error of five axis hybrid machine tool,a real-time tracing model of five axis hybrid machine tool tracking error based on dynamic inertia factor is proposed.The kinematics model of the five-axis hybrid machine tool is established,the position inverse solution is processed,and the dynamic differential equation of the mechanical transmission device is established.The time series analysis method is used to analyze the evolution characteristics of the machine tool,find the error term when the machine tool is working,and optimize the convergence ability of the SVM algorithm through the dynamic inertia factor,so as to realize the real-time tracing of the following error of the five-axis hybrid machine tool.Taking a five-axis hybrid machine tool as an example,this paper analyzes the reverse impulse error and straightness error of time series signal denoising.The experimental results show that the proposed model has good convergence performance,which can track the error object with good noise smoothing effect,and can track the error in all directions.
作者 杨坤 毕忠梁 赵夫超 YANG Kun;BI Zhongliang;ZHAO Fuchao(School of Mechanical and Electrical Engineering,Anqing Vocational and Technical College,Anqing 246003,China)
出处 《河南工程学院学报(自然科学版)》 2023年第2期49-53,共5页 Journal of Henan University of Engineering:Natural Science Edition
基金 安徽省教育厅2020年度高校自然科学研究项目(KJ2020A1026) 安徽省教育厅2020年度高等学校省级质量工程项目(2020sxzx27)。
关键词 动态惯性因子 五轴混联机床 跟随误差 实时溯因 运动学 逆解 dynamic inertia factor five-axis hybrid machine tool following error real-time abduction kinematics inverse solution
  • 相关文献

参考文献15

二级参考文献114

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部