期刊文献+

动态社交网络中非完全信息下谣言溯源问题研究 被引量:3

Rumor source identification under incomplete information in dynamic social network
原文传递
导出
摘要 突发事件发生后,在线社交网络往往成为谣言滋生与传播的重灾区.追溯谣言源头,从源头阻断谣言传播是舆情管控的有效手段.但在实际中在线社交网络是动态变化的,并且谣言传播的历史情况信息很难完全获取,通常只能获取当前时刻下谣言的传播情况,因此本文聚焦于研究动态社交网络中非完全信息下谣言溯源问题.本文根据节点的传播级联在最后一层网络上的感染集合与当前时刻下新增被谣言感染节点集合的期望对称差构造目标函数,并证明了目标函数具有#P-hard的性质,且既不是次模函数也不是超模函数.接下来设计了基于可达集合抽样的方法寻找谣言源头节点,并给出了算法框架和计算复杂度分析.最后在三个真实的动态网络数据集上仿真验证了本文所提出谣言溯源方法RSS相比于已有方法的效果更好,并探究了动态社交网络的拓扑结构变化对本文提出的谣言溯源方法准确性的影响. After emergencies,online social networks often become the hardest hit areas for rumors to breed and spread.Tracing the source of rumors and blocking the spread of rumors from the source is an effective means of public opinion control.However,in practice,online social networks are dynamic,and it is difficult to fully obtain the historical information of rumor propagation.Usually,we can only obtain the rumor propagation at the current moment.Therefore,this paper focuses on the rumor traceability under incomplete information in dynamic social networks.In this paper,the objective function is constructed according to the expected symmetric difference between the infected set on the last layer of the network and the new infected node set at the current time.It is proved that the objective function has the property of#P-hard and is neither a submodular function nor a supermodular function.Next,a method based on reachable set sampling is designed to find the rumor source node,the algorithm framework and computational complexity analysis are given.Finally,the simulation results on three real dynamic network data sets verify that the rumor tracing method RSS proposed in this paper is better than the existing methods,and explore the impact of the topology change of dynamic social networks on the accuracy of the rumor tracing method proposed in this paper.
作者 李育涛 朱建明 王国庆 黄钧 LI Yutao;ZHU Jianming;WANG Guoqing;HUANG Jun(School of Engineering Science,University of Chinese Academy of Sciences,Beijing 100049,China;School of Emergency Management Science and Engineering,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2023年第4期1132-1144,共13页 Systems Engineering-Theory & Practice
基金 国家自然科学基金“群组效应下虚假信息传播机理与最优干预策略研究”(72074203)。
关键词 动态社交网络 非完全信息 谣言溯源 最大似然估计 抽样算法 dynamic social network incomplete information rumor source identification maximum likelihood estimate sample algorithm
  • 相关文献

参考文献6

二级参考文献112

  • 1Zinoviev D, Duong V, Zhang HG. A game theoretical approach to modeling information dissemination in social networks. In: Proc. of the IMCCIC. 2010. 407-412.
  • 2Zinoviev D, Duong V. A game theoretical approach to broadcast information diffusion in social networks. In: Proc. of the 44th Annual Simulation Symp. Society for Computer Simulation Int'l, 2011.47-52.
  • 3Easley D, Kleinberg J. Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge University Press, 2010,6(1):6.1. [doi: 10.1017/S0266466609990685].
  • 4Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks. Physical Review E, 2001,63(6): 19. [doi: 10.1103/PhysRevE.63.066117].
  • 5Pastor-Satorras R, Vespignani A. Epidemic dynamics in finite size scale-free networks. Physical Review E, 2002,65(3):14. [doi: 10.1103/PhysRevE.65.035108].
  • 6Jagatic T, Johnson NA, Jakobsson M, Menczer F. Social phishing. Communications of the ACM, 2007,50(10):94-100. [doi: 10.1145/1290958.1290968].
  • 7Chen W, Wang C, Wang YJ. Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proc. of the 16th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM Press, 2010. 1029-1038. [doi: 10.1145/ 1835804.1835934].
  • 8Chen W, Wang YJ, Yang SY. Efficient influence maximization in social networks. In: Proc. of the 15th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM Press, 2009. 199-208. Idol: 10.1145/1557019.1557047].
  • 9Kwak H, Lee C, Park H, Moon S. What is Twitter, a social network or a news media. In: Proc. of the 19th Int'l Conf. on World Wide Web. ACM Press, 2010. 591-600. [doi: 10.1145/1772690.1772751].
  • 10Granovetter M. Threshold models of collective behavior. American Journal of Sociology, 1978,83(6): 1420-1443.

共引文献47

同被引文献63

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部