摘要
为提升时间序列数据的处理质量和精度,神经网络技术被应用于相关领域。然而,神经网络推理需要大量的硬件计算,边缘设备难以满足要求。文章选用MTGNN网络作为研究目标,通过基于模块替换的网络压缩方法对目标网络进行压缩,在保持精度的基础之上缩减神经网络的计算量。
To improve the processing quality and accuracy of time series data,neural network technology has been applied in related fields.However,neural network reasoning requires a lot of hardware computing,and Edge device are difficult to meet the requirements.This study selects the MTGNN network as the research objective,and compresses the target network through a module replacement based network compression method,reducing the computational complexity of the neural network while maintaining accuracy.
作者
向映宇
刘红文
胡浩卿
于振国
郭昊
XIANG Yingyu;LIU Hongwen;HU Haoqing;YU Zhenguo;GUO Hao
出处
《电力系统装备》
2023年第5期150-152,共3页
Electric Power System Equipment
关键词
边缘计算
神经网络
网络压缩
模块替换
edge computing
neural network
network compression
module replacement