期刊文献+

Lattice Boltzmann simulation of the effects of cavity structures and heater thermal conductivity on nucleate boiling heat transfer

下载PDF
导出
摘要 The boiling heat transfer technology with cavity surfaces can provide higher heat flux under lower wall superheat,which is of great significance for the cooling of electronic chips and microelectromechanical devices.In this paper,the boiling characteristics of the cavity surfaces are investigated based on the lattice Boltzmann(LB)method,focusing on the effects of cavity shapes,sizes,and heater thermal conductivity on the heat transfer performance.The results show that the triangular cavity has the best boiling performance since it has less residual vapor and higher bubble departure frequency than those of the trapezoidal and rectangular cavities.As the cavity size increases,the enhancement of heat transfer by the cavity mouth is suppressed by the heat accumulation effect at the heater bottom.The liquid rewetting process during bubble departure is the reason for the fluctuation of the space-averaged heat flux,and the heater thermal conductivity determines the fluctuation amplitude.The evaporation of liquid in the cavity with high thermal conductivity walls is more intense,resulting in shorter waiting time and higher bubble departure frequency.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第6期981-996,共16页 应用数学和力学(英文版)
基金 Project supported by the National Natural Science Foundation of China(Nos.11872083,12172017,12202021)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部