期刊文献+

基于可视化的风电机组图像识别算法研究

Research on Image Recognition Algorithm of Wind Turbine Based on Visualization
下载PDF
导出
摘要 由于大部分风电场选址在偏远地区,传统的巡检、监控方式已经不能满足稳定运行的要求,基于人工智能、可视化研究的无人远程巡检、智能图像识别分析系统得到广泛应用并起到良好效果。重点探讨几种基于可视化的图像识别算法,希望可以对风电运维监控可视化研究人员起到借鉴作用,进而推动风电事业健康长远发展。 With the vigorous development of wind power in China,wind power generation has become an important part of national clean energy.The number of wind turbines and their installed capacity have been rising continuously,and their safe and stable operation has become the key to ensure the stability of power supply.Since most wind farms are located in remote areas,the traditional inspection and monitoring methods can no longer meet the requirements of stable operation,and unmanned remote inspection and intelligent image recognition analysis systems based on artificial intelligence and visualization research are widely used and play a good role.Focus on several visualization-based image recognition algorithms,in the hope that it can play a reference role for wind power operation and maintenance monitoring visualization researchers,and then promote the healthy long-term development of wind power business.
作者 蔡金柱 赖右福 韩路路 郭鹏 郭强 张树晓 Cai Jinzhu;Lai Youfu;Han Lulu;Guo Peng;Guo Qiang;Zhang Shuxiao(Datang Sli County Wind Power Generation Co.,Ltd.,Anyang Henan 455000;Datang Renewable Energy Experimental Research Institute Co.,Ltd.,Beijing 100052)
出处 《现代工业经济和信息化》 2023年第5期277-280,共4页 Modern Industrial Economy and Informationization
关键词 巡检 风电机组 可视化 图像识别 inspection wind turbine visualization image recognition
  • 相关文献

参考文献5

二级参考文献45

  • 1张敏.人工智能在公共关系领域的应用研究[J].长春理工大学学报(社会科学版),2019,32(4):95-99. 被引量:1
  • 2Friedman N, Russell S. Image segmentation in video sequences: a probabilistic approach. In: Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence. Providence, USA: Morgan Kaufmann, 1997. 175-181
  • 3Stauffer C, Grimson W E L. Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern AnaJysis and Machine Intelligence, 2000, 22(8): 747-757
  • 4Kaewtrakulpong P, Bowden R. An improved adaptive back- ground mixture model for real-time tracking with shadow detection. In: Proceedings of the 2nd European Workshop on Advanced Video Based Surveillance Systems. Providence, USA: Kluwer Academic Publishers, 2001. 1-5
  • 5Zivkovic Z, van der Heijden F. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters, 2006, 27(7): 773-780
  • 6Lee D S. Effective Gaussian mixture learning for video background subtraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832
  • 7Power P W, Schoonees J A. Understanding background mixture models for foreground segmentation. In: Proceedings of Image and Vision Computing New Zealand. Auckland, New Zealand: Auckland University Press, 2002. 267-271
  • 8Elgammal A, Duraiswami R, Haxwood D, Davis L S. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of IEEE, 2002, 90(7): 1151-1163
  • 9Stenger B, Ramesh V, Paragios N, Coetzee F, Buhmann J M. Topology free hidden Markov models: application to background modeling. In: Proceedings of the 8th International Conference on Computer Vision. Vancouver, Canada: IEEE, 2001. 294-301
  • 10Toyama K, Krumm J, Brumitt B, Meyers B. Wallflower: principles and practice of background maintenance. In: Proceedings of the 7th International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999. 255-261

共引文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部