摘要
To obtain high yields of monocyclic aromatic hydrocarbons with methyl side chains,such as toluene and xylene,methane(CH_(4))can be introduced into the hydrocracking of polycyclic aromatic hydrocarbons.CH_(4)can participate in the reaction,supply methyl side chains to the product,and improve product distribution.In this study,the hydrogenation reaction of polycyclic aromatic hydrocarbons over a carbonized NiMo/Hβcatalyst in a CH_(4)and hydrogen(H_(2))environment was investigated to study the promotional effect of CH_(4)on the hydrocracking of polycyclic aromatics.Under conditions of 3.5 MPa,380℃,volume air velocity of 4 h^(-1),gas-oil volume ratio of 800,and H_(2):CH_(4)molar ratio of 1:1,the conversion rate of naphthalene was 99.97%,the liquid phase yield was 93.62%,and the selectivity of BTX were 17.76%,25.17%,and 20.47%,respectively.In comparison to the use of a H_(2)atmosphere,the selectivity of benzene was significantly decreased,whereas the selectivity of toluene and xylene were increased.It was shown that CH_(4)can participate in the hydrocracking of naphthalene and improve the selectivity of toluene and xylene in the liquid product.The carbonized NiMo/Hβcatalyst was characterized by a range of analytical methods(such as X-ray diffraction(XRD),ammonia-temperature-programmed desorption(NH3-TPD),hydrogen-temperature-programmed reduction(H_(2)-TPR),and X-ray photoelectron spectroscopy(XPS)).The results indicated that Ni and Mo carbides were the major species in the carbonized NiMo/Hβcatalyst and were considered to be active sites for the activation of CH_(4)and H_(2).After loading the metal components,the catalyst displayed prominent weak acidic sites,which may be suitable locations for cracking,alkylation,and other related reactions.Therefore,the carbonized NiMo/Hβcatalyst displayed multiple functions during the hydrocracking of polycyclic aromatic hydrocarbons in a CH_(4)and H_(2)environment.These results could be used to develop a new way to efficiently utilize polycyclic aromatic hydrocarbons and natural gas resources.
基金
the financial support from the Graduate Student Innovation and Practical Ability Training Program of Xi’an Shiyou University (No. YCS21212111)
Open Fund Project of the State Key Laboratory of Heavy Oil, China (SKLHOP201703)
National Natural Science Foundation of China (No. 52274039)
Natural Science Foundation of Shaanxi Provincial Department of Education (Grant 2023-JC-YB-414)
Natural Science Foundation of Shaanxi Province in China (No. 2022JZ-28)
the Open Fund Project of the National Oil Shale Exploitation Research and Development Center, China (No. 33550022-ZC0613-0255)