摘要
由于边缘服务器的带宽资源和计算能力相对较差,基于此提出了端边缘云三层网络架构,并设计了以系统能耗最小为目标的任务卸载和资源分配综合优化模型,该模型明确定义了马尔可夫随机过程的状态空间、动作空间和奖惩函数。采用了双深度Q网络(Double DQN)和对偶深度Q网络(Dueling DQN)算法进行仿真实验,结果表明:所提出的算法比多种基线算法和原始DQN算法的效果要好。
Due to the relatively poor bandwidth resources and computing capacity of edge servers,a three-layer network architecture of end-edge-cloud is proposed.A comprehensive optimization model for task unloading and resource allocation is designed to minimize the energy consumption of the system.This model clearly defines the state space,action space and reward and punishment function of Markov stochastic process.Simulation experiments are conducted using double deep Q-network(Double DQN)and dueling deep Q-network(Dueling DQN)algorithms.The experimental results show that the proposed algorithm performs better than various baseline algorithms and the original DQN algorithm.
作者
侯健
张燕
徐惠
朱咸军
邢凯
HOU Jian;ZHANG Yan;XU Hui;ZHU Xian-jun;XING Kai(Nanjing Normal University,Nanjing 210023,China;Jinling Institute of Technology,Nanjing 211169,China;Information Analysis Engineering Research Center of Jiangsu Province,Nanjing 211169,China;Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Jinling Hospital,Nanjing 210002,China)
出处
《金陵科技学院学报》
2023年第1期1-11,共11页
Journal of Jinling Institute of Technology
基金
中国博士后科学基金项目(2020T130129ZX)
江苏省博士后科研资助计划项目(2019K086)。
关键词
移动边缘计算
任务卸载
资源分配
系统能耗
深度强化学习
mobile edge computing
task unloading
resource allocation
system energy consumption
deep reinforcement learning