期刊文献+

基于定子电流特性分析的渣浆泵故障预测

Fault prediction of slurry pump based on multi-scale characteristic analysis of stator current
下载PDF
导出
摘要 磨矿分级流程使用渣浆泵输送矿浆并为旋流器提供分级所需的入口压力。渣浆泵输送的矿浆颗粒较大、矿浆浓度与粒度未知,易引发堵转、短路等事故,且事故难以预测。针对这一问题,利用定子电流中所反映的渣浆泵运行信息,结合EMD自适应分解方法与LSTM学习算法,提出了基于定子电流多尺度特性分析的渣浆泵故障预测方法。利用工业数据验证表明,该方法可有效预测矿用渣浆泵故障,可帮助生产技术人员提前给出切换备用泵的决策依据。 Slurry pump in grinding and classification process is used as the equipment to transport pulp and provide inlet pressure required for classification of hydro-cyclone.Particles in slurry transported by slurry pump are too large and the pulp concentration and particle size are unknown,which are easy to cause accidents such as rotor blocking and short circuit,and the accidents are difficult to predict.In order to solve this problem,a fault prediction method of slurry pump based on multi-scale characteristic analysis of stator current is proposed by making full use of the operation information of slurry pump reflected in stator current,combined with EMD adaptive decomposition method and LSTM learning algorithm.The industrial data verification shows that the method can effectively predict the fault of mine slurry pump,and can help the production and technical personnel to give the decision-making basis for switching the standby pump in advance.
作者 杨天皓 宋涛 余刚 王庆凯 邹国斌 李康 YANG Tianhao;SONG Tao;YU Gang;WANG Qingkai;ZOU Guobin;LI Kang(BGRIMM Technology Group,Beijing 102628,China;State Key Laboratory of Intelligent Optimized Manufacturing in Mining&Metallurgy Process,Beijing 102628,China)
出处 《中国矿业》 2023年第S01期204-208,共5页 China Mining Magazine
基金 国家重点研发计划项目资助(编号:2021YFC2902700) 甘肃省科技计划项目资助(编号:20ZD7 WC010)。
关键词 EMD自适应分解算法 LSTM算法 渣浆泵故障预测 定子电流多尺度特性 磨矿分级过程 EMD adaptive decomposition algorithm LSTM algorithm slurry pump fault prediction multi-scale characteristics of stator current grinding&classification process
  • 相关文献

参考文献7

二级参考文献84

共引文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部